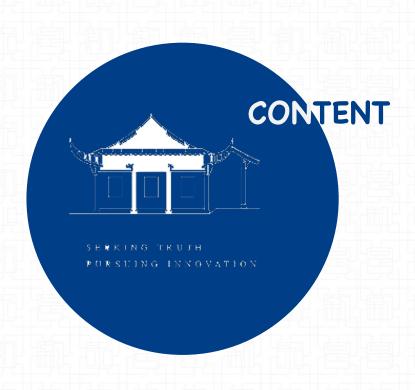


Molecular Generation with Chemical Feedback

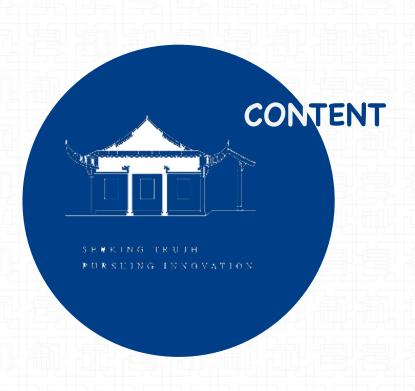
https://openreview.net/forum?id=9rPyHyjfwP

Yin Fang, Ningyu Zhang[†] ™, Zhuo Chen, Lingbing Guo, Xiaohui Fan, Huajun Chen[†] ™



02 Model

03 Experiments



02 Model

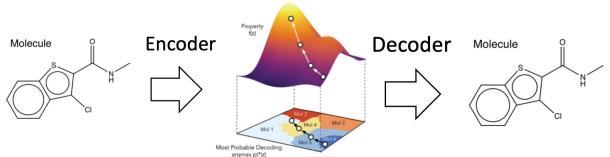
03 Experiments

Molecule Generation

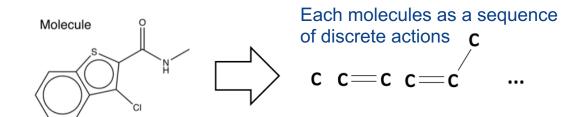
■ Molecule Generation: Finding novel molecular structures with desired properties

☐ Search in *continuous* hidden space

☐ Search in *discrete* chemical space

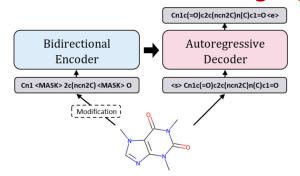


Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules (2018)



Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (2019)

☐ Search in *molecular language* space



Chemformer: a pre-trained transformer for computational chemistry (2022)

Challenges in Molecular Language Models

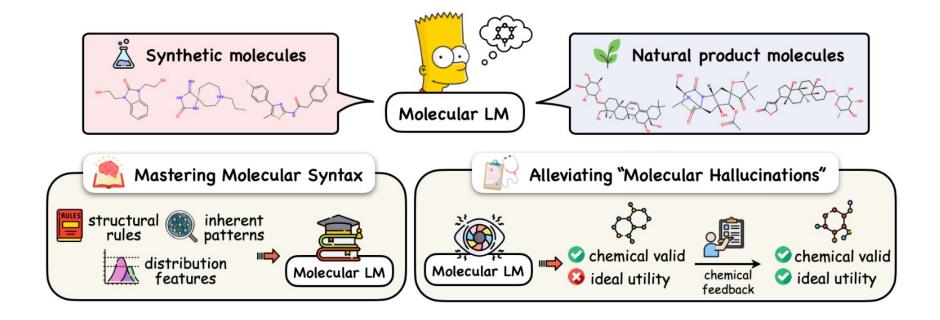
SMILES-based language models have a certain probability of producing *invalid* molecules

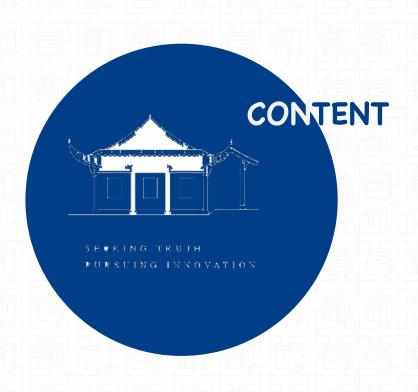
SMILES CNC(C)CC1=CC=C2C(=C1)OCO2 Random double mutation **SMILES** CNC(C)OC1=CC=C2C(=C1COCO2 syntactically invalid CNC(C)CC1=CCOCCC(=C1)OCO2 syntactically invalid CNC(C)#C1=CC=C2C(=C1)OCON syntactivally & semantically invalid

Molecular language models often suffer from "molecular hallucinations"

Proposal

Aligning pre-trained molecular language model with chemical preferences





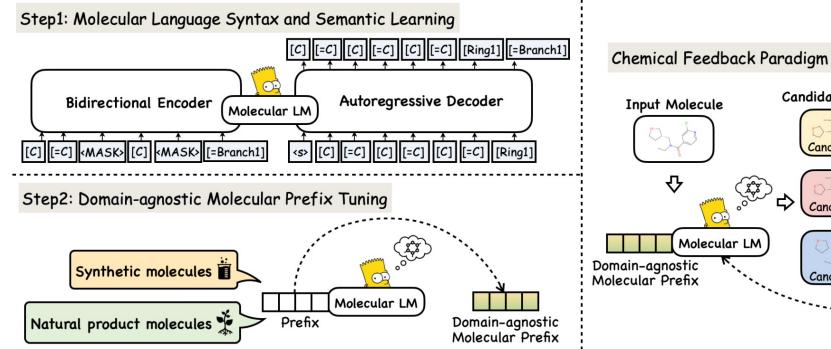
02 Model

03 Experiments

MolGen's Framework

expected

probability



Candidate Outputs Candidate A Candidate B

Domain-agnostic Molecular Pre-training:

- Stage 1: Understand the molecular structure, grammar, and intrinsic semantics.
- Stage 2: Harness knowledge transferable across diverse domains.

Self-feedback Paradigm - align PLM with chemical preference:

Candidate C

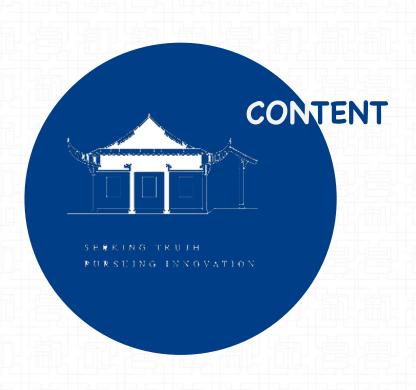
Align the probabilistic rankings with chemical preference rankings.

estimated

probability

• feedback

Learn to evaluate and rectify its molecular outputs.



02 Model

03 Experiments

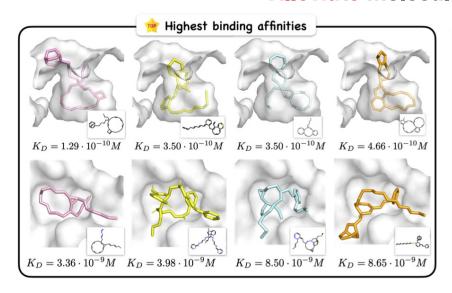
Molecular Distribution Learning

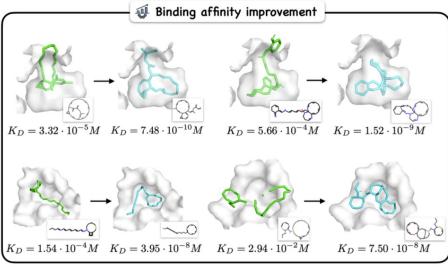
Reflects real-world molecular distributions

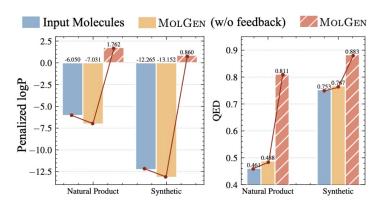
	SYNTHETIC MOLECULES							NATURAL PRODUCT MOLECULES						
MODEL	Validity↑	Frag↑	Scaf↑	SNN↑	IntDiv↑	FCD↓	Novelty↑	Validity↑	Frag↑	Scaf ↑	SNN↑	IntDiv↑	FCD↓	Novelty↑
AAE	.9368	.9910	.9022	.6081	.8557	.5555	.7931	.0082	.9687	.2638	.3680	.8704	4.109	.9943
LATENTGAN	.8966	.9986	.8867	.5132	.8565	.2968	.9498	.9225	.2771	.0884	.5321	.6009	45.53	.9949
CHARRNN	.9748	.9998	.9242	.6015	.8562	.0732	.8419	.7351	.8816	.5212	.4179	.8756	2.212	.9792
VAE	.9767	.9994	.9386	.6257	.8558	.0990	.6949	.2627	.8840	.4563	.3950	.8719	4.318	.9912
JT-VAE	1.000	.9965	.8964	.5477	.8551	.3954	.9143	1.000	.8798	.5012	.3748	.8743	12.03	.9957
LIMO	1.000	.9562	.1073	.6125	.8544	.1532	.8956	1.000	.7242	.0005	.3416	.7726	31.84	.9962
CHEMFORMER	.9843	.9889	.9248	.5622	.8553	.0061	.9581	.9825	.9826	.4126	.5875	.8650	.8346	.9947
MolGen	1.000	.9999	.9999	.9996	.8567	.0015	1.000	1.000	.9994	.8404	.8148	.8878	.6519	.9987

Molecular Optimization

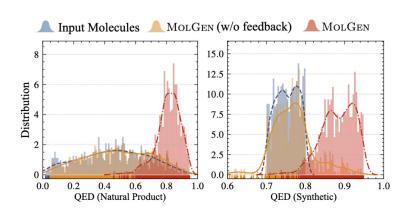
Alleviate molecular hallucinations





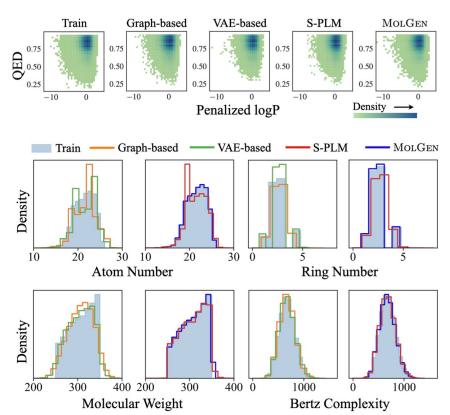


Model

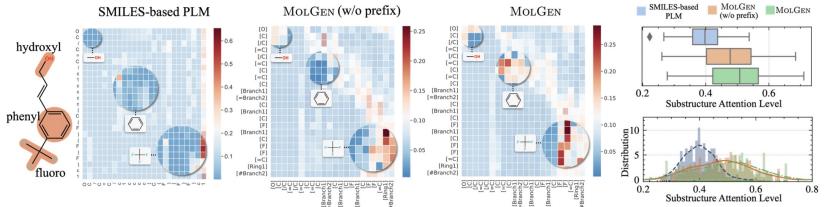


Analysis

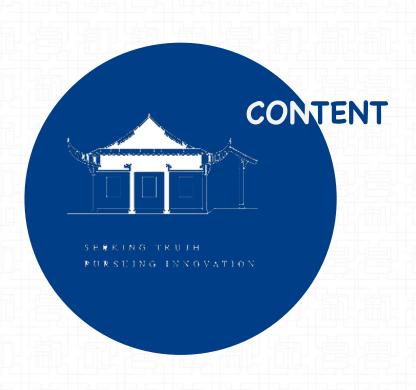
Captures molecular characteristics



Recognizes meaningful substructures



Experimental Analysis



02 Model

03 Experiments

Take Away

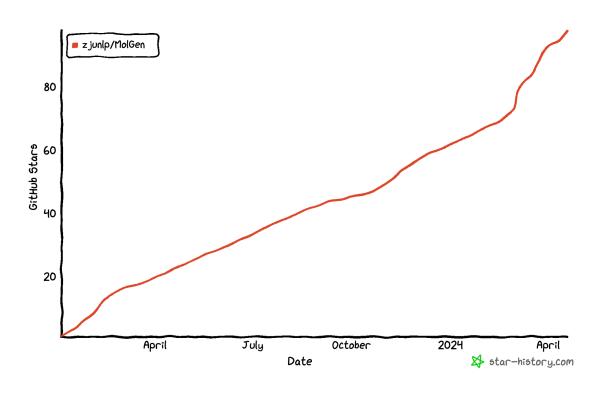
- ☐ This study proposes a pre-trained molecular language model tailored for molecule generation:
 - generating valid molecules while avoiding "molecular hallucinations"
 - ☐ identifying essential molecular substructures

Future Work

- ☐ Apply to other tasks such as retrosynthesis and reaction prediction
- Explore multimodal pre-training
- ☐ Incorporate additional sources of knowledge

Open Source

github.com/zjunlp/MolGen



zjunlp/MolGen-large

y Total downloads

12,632 (all time, tracked internally since January 2021)

zjunlp/MolGen-large-opt

1,726 (all time, tracked internally since January 2021)

zjunlp/MolGen-7B

1,568 (all time, tracked internally since January 2021)

Thank you!

Model

