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Background

With the evolution of sensors, the popularization of smart devices, and the rise of the
internet and social media, multi-modal data is showing a rapidly growing trend.
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Background
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TrackingCross-modal Generation

Cross-modal Retrieval Visual Grounding

Traditionally, most machine learning methods aim to build or use the many-to-
many or one-to-one correspondence.



Background
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These methods heavily rely on the well-established data correspondence!

TrackingCross-modal Generation

Cross-modal Retrieval Visual Grounding

Object/
Sample/

Modality correspondence



Motivation
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Read between the lines ,
and your dream about
person will be clear

A large crowd
turned out for
show .

There is no need
to be sad.

See pictures of
first home .

WRONGLY matched image-text pairs from Conceptual Captions dataset[1]

However, it is impractical to assume that the correspondence is well-established. 
Instead, noisy pairs are common in the real world.

Ref:
1. Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning, ACL 2018



Noisy pairs also emerge within language corpus, impacting the next token 
prediction (i.e., learning the context) in training large language models.

Motivation
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Predict next token

Uncorrelated context crawling from 
Google news



Motivation
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NC refers to the alignment errors in paired data rather 
than the errors in category annotations

Noisy LabelNoisy Correspondence vs 

Ref:
1. Learning with Noisy Correspondence for Cross-modal Matching, NeurIPS 2021. (Oral)

For the first time[1], we reveal  the  existence  and  influence  of  Noisy
Correspondence (NC) in a number of applications.



We show that, Noisy Correspondence will degrade the performance of various 
tasks  including but not limited to  Cross-modal Matching, Object  ReID,
Question Answering, Machine Reading Comprehension, etc.

Motivation
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An example: noisy correspondence in cross-modal matching task



Image-text retrieval

Visual Grounding

VQA

Dense Correspondence

Taxonomy
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Share some
with your
friends !

Pair-wise
Noisy Correspondence

Multi-level
Noisy Correspondence

Multi-granularity
Noisy Correspondence

Different type of Noisy correspondenceMulti-modal/view tasks 



Multi-granularity Correspondence Learning from 
Long-term Noisy Videos



Video-Language Pre-training (VLP) has emerged as a popular foundation for 
video understanding.

Background

Action Segmentation

Video QA Video Retrieval

Video Classification



Long-term temporal dependency in video plays an indispensable role in understanding 
the relationships and transitions over time.

However, the modeling of long videos entails an over-high computational cost, 
constraining this challenging problem rarely explored.

Background

Ref:
1. Long-Form Video-Language Pre-Training with Multimodal Temporal Contrastive Learning, NeurIPS 2022

Long-term dependency in  Video Learning[1]



As long videos are typically composed of a sequence of short video clips 
according to ASR timestamps, an alternative approach is to explore the temporal 
correlation among video clips and captions.

TempCLR[1] uses Dynamic Time Warping to measure the sequential distance in a 
late fusion manner.

Background

Ref:
1. TempCLR: Temporal Alignment Representation with Contrastive Learning, ICLR 2023

TempCLR



Dividing long videos into short clips would introduce multi-granularity noisy 
correspondence (MNC) challenge.

n Coarse-grained misalignment (Clip-caption). 
n Fine-grained misalignment (Frame-word) 

Observation & Motivations



Observation & Motivations

Coarse-grained Noisy Correspondence (Clip-caption)
n Asynchronous misalignment refers to temporal misalignment between 

subtitles and visual clips. It often occurs when people explain their actions 
before or after actually performing them.

n Irrelevant misalignment refers to irrelevant or meaningless captions that 
cannot be aligned with any available video, and vice versa for video clips. 



Observation & Motivations

Ref:
1. Temporal Alignment Networks for Long-term Video, CVPR 2022 (Oral)

Coarse-grained Noisy Correspondence (Clip-caption)
n According to Han et al. (2022)[1], only 30% of clip-caption pairs are visually 

aligned in HowTo100M, with even fewer 15% being naturally well-aligned; 



Observation & Motivations

Fine-grained Noisy Correspondence (Frame-word) 
n Within each video clip, the narration sentences may only partially 

correlate with the visual frames. 
n Irrelevant words or frames can distort the identification of crucial ones 

and result in inaccurate similarity measurements, further contaminating 
the clip-caption alignment. 



DTW struggles to handle this well！

Dividing long videos into short clips would introduce multi-granularity noisy 
correspondence (MNC) challenge.

Observation & Motivations



Challenge 1: Directly modeling long videos entails heavy computation demands

Align between short clips and captions

Challenge 2: Multi-granularity noisy correspondence (DTW-based method)

Unified Optimal Transport Solution

Observation & Motivations



Unified Optimal Transport Solution

n Video-paragraph contrastive loss (video-level)
unifies the multi-granularity learning in a fine to coarse perspective through a
noise-robust temporal optimal transport distance.

n Clip-caption contrastive loss (clip-level) 
exploits potential false negative pairs (pair-wise NC) to improve clip representation
and ensure accurate temporal modeling.

Method



Method
Multi-granularity correspondence learning (Video level)

Video-paragraph contrastive learning captures long-term temporal 
correlations from a fine-to-coarse perspective. 

From fine-to-coarse



Method

Fine-grained Alignment – Soft-maximum Operation
n Identify the most important word/frame by log-sum-exp approximation in a late 

interactive manner 
n Average soft-maximum similarities of all frames/words as clip-caption level 

similarity
n 𝛼 controls the importance



Coarse-grained Alignment – Alignable Prompt Bucket on Optimal Transport
n Optimal transport naturally addressing asynchronous and one-to-many alignment

n Alignable prompt bucket filters irrelevant clips/captions, serving as a similarity margin that 
distinguishes between alignable and unalignable clips and captions

n Seamlessly integrated in Sinkhorn iterations 

Method



Coarse-grained Alignment – Alignable Prompt Bucket on Optimal Transport
n Sinkhorn iterations

Method

Clips

Captions m+1 

Sinkhorn

n+1 

m+1 

n+1 

Alignable Prompt Bucket

Optimal 
Transport

n Video-paragraph contrastive loss

Transport Assignment

OT Distance



Method

Faulty Negative Exploitation (Clip-level)

n Identify sematic within-batch clip-caption similarity matrix through optimal 
transport

n Rectify the one-hot target T of clip-caption contrastive loss based on the transport 
assignment 

pairs of similar semantic are 
WRONGLY regraded as negative



Experiments
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Task1 Long video Retrieval – YoucookII
n Cap. Avg. matches one clip for each caption and retrieves the video with the 

most matched clips. 
n DTW and OTAM calculate the sequence distance by accumulating the clip-

caption distance based on chronological order. 



Experiments
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Task2 Various Downstream Tasks
n Text-to-video Retrieval: YoucookII, MSR-VTT
n Action Segmentation: COIN
n Video QA: MSR-VTT



Our fine-grained
Better than FILIP[1]

OT
Outperform

DTW

Task3 Effectiveness on noisy correspondence – Ablation Study
n Long video retrieval (with background)
n long video retrieval (without backgound)
n Short clip retrieval

Experiments

27Ref:
1. FILIP: Fine-grained Interactive Language-Image Pre-Training, ICLR 2022



Experiments

28Ref:
1. Temporal Alignment Networks for Long-term Video, CVPR 2022

We tend not to fit noise 

Task3 Effectiveness on noisy correspondence – HTM-Align[1]

HTM- Align is a subset of the HowTo100M dataset, manually annotated to rectify the 
alignment in the presence of noisy correspondence. 



Experiments
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Ours

Task3 Effectiveness on noisy correspondence – Visualization 



Task4 Training Efficiency

Experiments
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Negligible
Similar time cost

but 4x sequence length
32 frame

128 frame



Future work

n Multi-modal scenarios (≥3, plus audio etc.). Addressing multi-modal noisy 
correspondence presents an open challenge, given the quadratic growth in 
combinations concerning the number of modalities. 

n Utilization of Noise. An intriguing question arises regarding whether these 
noisy samples could be utilized as an incentive for training.

n All-in-one solution of Noisy Correspondence. Is it feasible to propose a 
unified solution that addresses all types of noisy correspondence?



Conclusions 
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Noisy LabelNoisy Correspondence vs 

n Study a new paradigm for the noisy labels, i.e., noisy correspondence which
is totally different from existing noisy label learning;

n Noisy correspondence is general to many intelligent techniques, including
but not limited to multi-agent synchronization, cross-modal retrieval, VQA,
visual grounding, visual navigation, tracking, Re-ID, and so on;



Related works on Noisy Correspondence

https://github.com/XLearning-SCU/Awesome-Noisy-Correspondencehttp://lin-yijie.github.io/projects/Norton/
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