

Backgrounds

- Robust locomotion control depends on accurate state estimations.
- The sensors of most legged robots can only provide partial and noisy observations.
- Previous two stage pipeline inevitably introduce information loss and may suffer from the noise brought by domain randomization.

Motivation

- Environmental properties can be **considered as** disturbances.
- Internal Model Control suggests that we can do robust control without directly **modeling the disturbances**.

Hybrid Internal Model: Learning Agile Legged Locomotion with Simulated Robot Response Junfeng Long^{1,*}, Zirui Wang^{1,2,*}, Quanyi Li¹, Jiawei Gao^{1,3}, Liu Cao^{1,3}, Jiangmiao Pang^{1,†} ¹OpenRobot Lab, Shanghai AI Laboratory, ²Zhejiang University, ³Tsinghua University

Construction of Robot Response:

Explicitly, we wish the robot to track a target velocity command, however, we also wish the robot to keep stable, which is implicit. Therefore, the robot's response also compose the real velocity and a variable indicating stability and dynamics.

Auxiliary Task:

Estimating the real velocity of the robot and estimate the variable indicating stability and dynamics.

Contrastive Learning:

- Supervision from both positive and negative samples -> higher efficiency
- Fuzzier representation compared with regression and reconstruction -> easier to adapt to real world
- Less sensitive to noise -> less influenced by human-designed noise and domain randomization

Experimental Re					
• Real robot experim					
Benchmarks	Enviro	onme			
Stairs	Short (A	-rang (1)			
	Long (Ali	-rang engo			
Unseen Terrains	Compo Terrain	ositio (Alie			
	Defor Slope	rmab e (A1			
Anti- disturbance	Drag Obstac	gging cle (A			
	Vertie (A	cal H A1)			
	Pay (A	vload 1)			
	Missir (Ali	ng ste engo			
(a)) Stairs				
	alization rerrain Rough	ON C Type Stairs Slope Slope Discrete			
(a) Ours Contact:					
lunfong Long (jung					
7irui Wang (ziseoi					
liangmian Dang (n					
Draiget Mabrid					

lesults:

nents

nts	Metrics	Ours	RMA	MoB	Built-in MPC
ge	Success rate (%)	100	60	0	0
ge)	Number of stairs	176.5±7.81	75.35±19.98	0.0±0.0	0.0±0.0
onal engo)	Success rate (%)	85	45	0	0
ole 1)	Success rate (%)	55	10	0	0
g A1)	Maximum weight (Kg)	10	10	7	3
lit	Maximum weight (Kg)	8	7.5	7	5
	Maximum weight (Kg)	8	7	4	7
eps	Success rate	100	0	0	0

(b) Unseen terrains

(c) Anti-disturbance

• Ablations of number of prototypes

(b) Regression (Nahrendra et al., 2023

fengac@gmail.com

iwong@zju.edu.cn

angjiangmiao@gmail.com **Project Website:** <u>https://junfeng-long.github.io/HIMLoco/</u>

