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Intermediate Step Validation 7 ICLR

* Correct intermediate steps are crucial for LLMs to perform complex reasoning.
* High-quality step-wise annotations are hard to obtain.
e Current data synthesis trades off between corectness and reusability.

v' MUSTARD synthesizes correct, scalable, and reusable mathematical data by combining the
advantages of LLMs in verbalization and formal theorem provers in rigorous data validation.
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Figure 1: A comparison of methods of synthesizing and validating intermediate reasoning steps.
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Alternate coordinate
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# Problem:

Let V be a vector space, and let By =
Vq,Vy, ", Vg and By, = wy, wy, -+, w, be
two bases for V. Prove that there exists an
invertible linearmap T : V — V such that
T(v;) =w;foreachiinl,?2,..,n

-

-
# Formal proof in Lean 3:

*7lean
import linear algebra.basis

variables V :
[module R V]
variables v w :
variables Bl B2
variables (hBl

Type* [add comm group V]

\Y
: set V

# Informal proof:

ThemapT : V - V definedby T(v;) =
w; for each i is linear: indeed, for any
vectors v, v’ in By and any scalars ¢, ¢’ ,
we have T(cv + c'v') = cw + ¢'w'
where w = T(v) and w' = T(v"). This
follows from the linearity properties of
vector addition and scalar multiplication

/| in the vector space V.

: 1is _basis R B1)
is _basis R B2)

lemma exists invertible linear map :
3 (T : V- [R] V) (hT :
R T) (hinv : function.bijective T),
vV (v € Bl), T v € B2
begin use
hB1, hB2.bijective hB1l],
intros v hv,
apply hB2.mem span,
rw hBl.repr self hv,
exact A _, hB2.smul 5
end

/ \

(hB2 :

is_linear map

[hB2.constr hBl, hB2.is linear
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# Problem:
# Informal proof:

# Formal proof in
Lean 3:
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|-— Concept Seeding
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* Sampling math concepts from concept pool

Proof Generation

mm) MUSTARDSAUCE (MUSTARD resource)

Proof Filtering —l

Prompting an LLM to generate problem, informal solution, and formal solution in Lean 3.
Collecting data by Lean Prover validation.
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§c) MUSTARDSAUCE: Data Difficulty

v’ 5,866 MWP & ATP data points w/ {informal, formal} {statement, solution}.
v’ Proof length increases over educational levels.

v The most challenging problems require around 30 proof steps w/ 20 Lean tactics.
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Figure 4: Distributions of formal proof lengths.



MUSTARDSAUCE: Data Quality
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 We randomly select 200 data points from the generated data, 100 of which pass the Lean Prover (Group
Valid) and 100 of which do not (Group Invalid).

* 6 inspection dimensions including factuality check and consistency check on informal/formal

statement/proof.

v (D1) shows significance. = High quality math questions.

v (D4) and (D6) show significant differences between Group Valid & Invalid. = High quality autoformalization.

Table 3: Inspection dimensions and requirements in human evaluation. IS: Informal Statement.
IP: Informal Proof. FS: Formal Statement. FP: Formal Proof. RT: Reasoning Type. Significant
p < 0.005 are marked with bold.

Inspection Dimension Requirement Valid Invalid  p-value
(D1) IS Correctness Whether the informal statement is factually correct. 93.50 83.50 0.00167
(D2) IS Relevance ?;I:lectehpez the informal statement is relevant to each seed 87 50 92.50 0.09604
(D3) RT Classification = Whether the informal statement is of the required question type. 67.00 68.50 0.74903
(D4) IP Correctness $ZZZZ ;he informal proof correctly solves the informal 88 50 73.50 0.00012
(D) IS5 Alignment g, voblom and are aligned with cach other. | 7400 6650 010138
(D6) IP-FP Alignment Whether the informal proof and the formal proof describe the 7900 54.00 0.00018

same solution and have aligned proof steps.




{C) Data Benefits: Automated Theorem Proving
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v’ Average of 18.15% relative performance gain.

v’ Llama 2-7B achieves 16.00% gain on mathlib, 16.00% gain on miniF2F, and 17.31% gain on

Fig. Pass@]1 results on automated theorem proving (ATP) tasks. > denotes a fine-tuning step. test: MUSTARDSAUCE-test. Note that the

MUSTARDSAUCE-test.

reported results on MUSTARDSAUCE-test are obtained by only fine-tuning on the MUSTARDSAUCE-valid training split.
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Using the generated MUSTARDSAUCE to fine-tune LMs and then validate on automated theorem
proving (ATP).
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m Data Benefits: Math Word Problem “; ICLR

e Using the generated MUSTARDSAUCE to Fine-tune LMs and then validate on math word
problems (MWP).

v’ Average of 11.01% relative performance gain.
v' GPT2-large achieves 28.57% gain on MATH, 12.20% gain on GSMS8K, zero-shot setting.

Fig. Majl @1 results on GSM8K (G) and MATH (M). Zero: Zero-shot. Few: Few-shot. > denotes a fine-tuning step.

Llama 2-7B GPT2-large
18 18
16 —  _ led 16
14 1600 415.4 14
12 . 12
10 — — __" 10
8 9.6 oq 9.5 1 8
6 | 7.2 6 6.8 [g.4 6.7 70
: 4 4.6
4.2 4.2 39 4.1
: g meEEy | (EREEE D e
| MEEEE NEREN =eEEE RS 0 umel xEEE
GSMS8K (zero-shot) GSMB8K (few-shot) MATH (zero-shot) MATH (few-shot) GSMS8K (zero-shot) GSMS8K (few-shot) MATH (zero-shot) MATH (few-shot)

@Llama 2-7B [lLlama 2-7B > total ~ @Llama 2-7B > invalid I GPT2-large [1GPT2-large > total @ GPT2-large > invalid
[ Llama 2-7B > random @ Llama 2-7B > valid 1 GPT2-large > random @ GPT2-large > valid



.......

=D MUSTARD! 73 ICLR

4

L

e
¢

Poster: Halle B, Tue 7 May 4:30— 6:30 p.m. CEST

1. We propose a novel framework MUSTARD that can generate high-quality mathematical data
(both informal and formal) with an interplay between generative language model and theorem
prover assistants.

2. We release the MUSTARDSAUCE, which contains both math word problems and theorem-proving
problems spanning elementary to higher educational levels. Each sample has corresponding
informal and formal solutions.

3. We conduct extensive analysis and experiments on the generated data, demonstrating their
quality, diversity, and effectiveness in improving language models’ mathematical reasoning
performance.

Contact: yinya.huang@hotmail.com

. Read our paper « Try our code ‘W Take on the exciting challenges!



