
What does automatic differentiation compute for neural networks?
Sejun Park1∗, Sanghyuk Chun2∗, Wonyeol Lee3

1Korea University, 2NAVER AI Lab, 3Carnegie Mellon University

TL;DR. We theoretically study when AD computes a correct derivative. We empirically show that practical NNs satisfy our sufficient conditions for the correctness.

Summary
• Automatic differentiation (AD) is an efficient, popular algorithm to

compute the derivative of neural networks (NNs). It is based on the
chain rule, and consists of the forward mode and reverse mode.

• However, if a NN uses non-differentiable functions (e.g., ReLU),
AD might not compute a correct derivative, (i.e., a generalized
derivative called a Clarke subderivative). Prior works have shown
that AD is correct under specific conditions.

• This work shows that AD is always correct for NNs with pointwise
activation functions (e.g., ReLUs), if NNs use “distinct” bias pa-
rameters (e.g., fully-connected layers) and minibatch size is one.

• For NNs with “shared” bias parameters (e.g., convolutional layers)
and general minibatch sizes, we prove that AD is always correct if
AD uses proper proxy derivatives for activation functions.

• For NNs with non-pointwise activation functions (i.e., maxpools),
we provide a sufficient condition for the correctness of AD. We
empirically verify that this condition holds in practical scenarios.

Overview

Distinct Shared Minibatch Choice of Without Always
bias params bias params of size one proxy derivatives maxpools correct?

Thm1 ✓ ✓ ✓ ✓
Lem2 ✓ ✓ ✗
Lem3 ✓ ✓ ✗
Thm4 ✓ D−ρ(x) (or D+ρ(x)) ✓ ✓

Thm6 ✓ D−ρ(x) (or D+ρ(x)) ✓ ✓
Lem7 ✓ D−ρ(x) (or D+ρ(x)) ✗

• For cases when AD might not be correct (i.e., ✗), we show suffi-
cient conditions when AD is correct (Thm5 & 8).

Problem Setup

x1

x2

x3

Input minibatch
X ∈ RN0×B

y1

y2

y3

y4

Hidden layer

fl ρ1

ρ2

ρ3

ρ4

Pointwise activation
(e.g., ReLU)

+b1

+b2

+b3

+b4

ϕ1

ϕ2

ϕ3

ϕ4

Non-pointwise
act.(e.g., maxpool)

• Condition 1: Ψ has “distinct bias parameters” and ϕ is identity.
• Condition 2: Ψ has “shared bias parameters” and ϕ is maxpool.

AD on Networks with Condition 1
• The neural networks satisfying Condition 1 cover a wide range

of practical network architectures including fully-connected neural
networks. Likewise, fl in Condition 1 can represent attention lay-
ers, residual connections, normalization layers (e.g., BN and LN),
and their compositions. In addition, Condition 1 allows any point-
wise and piecewise-analytic activation functions such as ReLU
and HardSigmoid.

• Our first theoretical result (Thm1) shows that AD always computes
a correct derivative for a network Ψ with Condition 1 if

– Ψ has distinct bias parameters and
– the minibatch size is one.

• If any of the conditions does not hold, then there exist cases where
AD does not compute a correct derivative (Lem2 & 3).

• If we suppose that AD uses the proxy derivative of non-
differentiable activation ρ at every non-differentiable point x as the
same D−ρ(x) (or D+ρ(x)), then AD is correct (Thm4).

• Some popular activation functions, such as ReLU6, HardTanh,
and HardSigmoid, having two non-differentiable points and Py-
Torch/Tensorflow use DADρ(x) = 0 as their proxy gradients for
non-differentiable x. Since they use D− and D+ simultaneously,
these networks do not satisfy the conditions in Theorem 4.

• Thankfully, we can show a sufficient condition for the correctness
of AD under any minibatch size and the (possible) absence of
distinct bias parameters for a network Ψ with Condition 1 (Thm5).

Sufficient condition for fully-connected networks (informal).
If the input tensor (hidden dim × minibatch size) of each
layer is linearly independent whenever the layer has any non-
differentiable point (e.g., ReLU(0)), then AD is correct. If the
input and hidden dimensions are larger than the minibatch size,
this condition can be easily satisfied.

AD on Networks with Condition 2
• In practice, we use more complex networks not satisfying Condi-

tion 1. For example, a convolutional layer has shared bias param-
eters. There also exists non-pointwise activations such as max-
pools. We extend our results to more complex networks.

• Our theoretical result (Thm6) shows that AD always computes a
correct derivative for a network Ψ satisfying Condition 2 if

– Ψ has no maxpool (i.e., ϕ(x) = x) and
– DADρ(x) = D−ρ(x) (or D+ρ(x)).

AD on Networks with Condition 2 (Cont.)
• If Ψ has maxpools, then there exist cases where AD does not

compute a correct derivative (Lem7).

• However, there exists a sufficient condition where AD computes a
correct derivative in this case (Thm8). Furthermore, an efficient
algorithm exists to verify the sufficient condition.

π i*
Conv weight w

ReLU MaxPool

α i* α i*

(When tie-breaking happened)

Sufficient condition for ConvNets (informal). If there exists
x satisfying ⟨πi∗ , x⟩ > ⟨πi, x⟩ for all i where αi = αi∗ for every
layer where a maxpool has tie-breaking, then AD is correct.

Empricial Verification
• Scenario 1. Fully-connected networks with {ReLU6, HardTanh,

HardSigmoid} on MNIST:

– Recap (Thm4). These networks do not satisfy the conditions of
Thm4; therefore, they do not guarantee the correctness of AD.

– We can easily verify whether AD is correct by checking the lin-
ear independence of the input tensors (Thm5).

– During all training steps, the networks satisfy the sufficient
condition of Theorem 5. On average, during 9,380 training
steps, the non-differentiable points of activation functions were
touched 0, 9.8, and 13.8 times for each network.

• Scenario 2. ConvNets with maxpools: VGG11, VGG11-BN and
ResNet18 on CIFAR-10.

– Recap (Lem7). If a maxpool exists, a network with Condition 2
does not guarantee the correctness of AD.

– We can verify the correctness of AD by checking the conditions
of the events that a tie occurs at maxpool operations (Thm8).

Network Ratio of maxpool tie-breaking # training steps with the event Correct?

VGG11 3.2% of 1M max operations 1435.8 steps among 7820 steps ✓

VGG11-BN 4.1% of 1M max operations 3668.5 steps among 7820 steps ✓

ResNet18 4.2% of 2M max operations 3904.8 steps among 7820 steps ✓

• For both scenarios, AD does not guarantee a correct derivative
(Lem2, Lem3 & Lem7). However, we empirically verify that AD
computes a correct derivative (Thm5 & Thm8).


