CASPR: Combining Axis Preconditioners through Kronecker Approximation for Deep Learning

Sai Surya Duvvuri

Joint work with Devvrit, Rohan Anil, Cho-Jui Hsieh, Inderjit Dhillon

Optimization Algorithms in Practice

• Objective:

$$\min_w f(w), \ w \in \mathbb{R}^d$$

• Solution:

For
$$t = 2, \cdots, T$$

 $w_t = w_{t-1} - \eta_t X_t \nabla f(w_{t-1})$

• X_t is a preconditioner matrix of size d x d.

Preconditioning

often leads to faster convergence / better "condition number"

Geometrically they scale and rotate gradients

• Preconditioning typically involves inverting curvature information.

image from https://rosanneliu.com/dlctfs/dlct_210312.pdf

Optimizers for Large Deep Learning Models

- Finding preconditioner can incur high memory and compute.
- diagonal preconditioners:
 - Adam and Adagrad use coordinate wise second-moments $(g)_i^2$
 - But don't utilize cross moments $(g)_i(g)_j$
- Full-matrix Adagrad uses cross-moments → potential for faster convergence!

Aim

• Full matrix-Adagrad update:

$$H_t = H_{t-1} + g_t g_t^T,$$
 \rightarrow memory intensive - $\mathcal{O}(d^2)$
 $w_{t+1} = w_t - \eta H_t^{-1/2} g_t$ \rightarrow compute intensive - $\mathcal{O}(d^3)$

- Develop an approximation \hat{H}_t to second-moment matrix H_t :
 - Accurate approximation.
 - Low memory to store.
 - Fast inversion.

Shampoo (Gupta et al., 2018)

- Scalable implementation (Anil et al., 2020)
- Applications in recommendation models in Google (Anil et al., 2022)
- Practical kronecker product approximation.
- We utilize Kronecker sum to develop a better approximation.

Approximating Second-Moment Matrix of 2-D Parameter

Each column as separate gradient vector

Column Major Flattening

Block-Diagonal Approximation with Identical Blocks

Column Major Flattening

Figure: $I_n \otimes L$

Block-Diagonal Approximation with Identical Blocks

• Set all blocks to be *L* in the subproblem

$$L^* = \underset{L \succeq 0}{\operatorname{argmin}} \left\| I_n \otimes L - \sum_{t=1}^T g_t g_t^\top \right\|_F = \frac{1}{n} \sum_{t=1}^T G_t G_t^\top$$
 (Explicit Solution!)

Row Preconditioner

• We can similarly form row-preconditioner.

$$R^* = \underset{L \succeq 0}{\operatorname{argmin}} \left\| R \otimes I_m - \sum_{t=1}^T g_t g_t^\top \right\|_F = \frac{1}{m} \sum_{t=1}^T G_t^\top G_t$$

Axes Preconditioners

Figure: $R \otimes I_m$

• Individually both approximations miss out on a lot of cross-moments.

Axes Preconditioners

- Individually both approximations miss out on a lot of cross-moments.
- Should combine both to approximate the remaining cross-moments?

CASPR Update

• CASPR update for p = 2 is:

$$X_t \coloneqq \left((R_t^{-1/4} \otimes I_m + I_n \otimes L_t^{-1/4})/2 \right)^2; \quad W_t \coloneqq W_{t-1} - \eta X_t g_t,$$

• Expanding the update gives:

$$W_{t+1} \coloneqq W_t - \eta \left(L_t^{-1/2} G_t + 2L_t^{-1/4} G_t R_t^{-1/4} + G_t R_t^{-1/2} \right)$$

Comparison with Shampoo Update

CASPR update	Shampoo update
Update preconditioners: $L_t \coloneqq L_{t-1} + G_t G_t^{ op}, R_t \coloneqq R_{t-1} + G_t^{ op} G_t$	
Compute $L^{-1/4}$, $R^{-1/4}$	
Precondition gradient and update parameters:	
$U_t \coloneqq L_t^{-1/4} G_t + G_t R_t^{-1/4}$	$\bigcup_t := L_t^{-1/4} G_t R_t^{-1/4}$
$U_t\coloneqq L_t^{-1/4}U_t+U_tR_t^{-1/4}$	
$W_t \coloneqq W_{t-1} - \eta U_t$	$W_t \coloneqq W_{t-1} - \eta U_t$

Regret Bound Analysis

• We conduct analysis in online convex optimization framework.

Theorem (Regret upper bound of CASPR Algorithm)

Given that the loss functions $f_t : \mathbb{R}^{m \times n} \to \mathbb{R}$, $\forall t \in [T]$ are convex and G-Lipschitz in ℓ_2 -norm i.e., $\|\nabla f_t(W)\|_2 \leq G$, $W \in \mathbb{R}^{m \times n}$, Algorithm 1 incurs the following regret

$$\sum_{t=1}^{T} f_t(W_t) - f_t(W^*) \leq \sqrt{2r} D \operatorname{tr} \left(\left((L_T^{-1/4} \otimes I_n + I_m \otimes R_T^{-1/4})/2 \right)^{-2} \right) \\ \leq \sqrt{2r} D \operatorname{tr} \left(L_T^{1/4} \otimes R_T^{1/4} \right) = \mathcal{O}(\sqrt{T})$$

when $\eta = D/\sqrt{2r}$, where $r = \max_t \operatorname{rank}(G_t)$, $D = \|W_t - W^*\|_F$

• CASPR has tighter regret upper bound than Shampoo.

Autoregressive Large Language Modeling

• GLU based decoder-only transformer models trained on C4 dataset.

a) 8192 batch size and 14M parameters b) 256 batch size and 234M parameters.

GNN and Transformer on Parts of Speech

- Time taken for Shampoo and CASPR are about the same.
- CASPR has a better Validation Accuracy than Shampoo.
- CASPR is better than AdamW when run for fixed amount of time.

Conclusion and Future Directions

- Novel Kronecker-sum inspired combination approach to approximate the second-moment matrix using axes preconditioners.
- Stronger convergence guarantees than Shampoo, which is a special case of our framework of combining axes preconditioners.
- More accurate axes preconditioners solving the problem

$$\hat{H}_t \coloneqq rgmin_{\hat{H} \in \mathcal{S}} \left\| \hat{H} - H_t
ight\|_F$$

• Adapt CASPR to approximate Hessian instead of full-matrix Adagrad.