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Optimization Algorithms in Practice

e Objective:
min f(w), w € RY

e Solution:
fort=2,---,T
Wt = W1 — 77tXtVf(Wt—1)

e X; is a preconditioner matrix of size d x d.



Preconditioning

often leads to faster convergence / better “condition number”

Geometrically they scale and rotate gradients

e Preconditioning typically involves inverting curvature information.

image from https://rosanneliu.com/dIctfs/dict_210312.pdf



Optimizers for Large Deep Learning Models

e Finding preconditioner can incur high memory and compute.

e diagonal preconditioners:
o Adam and Adagrad use coordinate wise second-moments (g)z2
o But don’t utilize cross moments (g)z (g)j

e Full-matrix Adagrad uses cross-moments — potential for faster convergence!

Full-matrix Adagrad references: “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", Duchi, Hazan, Singer'10
"Adaptive Bound Optimization for Online Convex Optimization", H. Brendan McMahan, Matthew Streeter'10



Aim
e Full matrix-Adagrad update:

Hy = Hi—1 + gtgtT, — memory intensive - O(d?)

Wil = Wy — nHt_l/zgt — compute intensive - (’)(d3)

e Develop an approximation I-"It to second-moment matrix H;:
o Accurate approximation.
o Low memory to store.
o Fastinversion.



Shampoo (Gupta et al., 2018)

Scalable implementation (Anil et al., 2020)

Applications in recommendation models in Google (Anil et al., 2022)
Practical kronecker product approximation.

We utilize Kronecker sum to develop a better approximation.



Approximating Second-Moment Matrix of 2-D Parameter

1

Each column as separate gradient vector

Column Major Flattening



Block-Diagonal Approximation with Identical Blocks
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Column Major Flattening
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Block-Diagonal Approximation with Identical Blocks

e Set all blocks to be L in the subproblem

-
h®L—Y gl

t=1

L* = argmin
L>0

=
1
== Z GG, (Explicit Solution!)
F n t=1



Row Preconditioner

e \We can similarly form row-preconditioner.

.
R®Im— Y g8

t=1

R* = argmin

1 T
==Y G'G

F



Axes Preconditioners
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e Individually both approximations miss out on a lot of cross-moments.



Axes Preconditioners

1 2 3 4 5 6 7 8 910 1 1213 14 15 1 2 3 4 5 6 7 8 910 11 1213 14 15

® N O s W N =
0 N O s WON -

©
©o

-
o

-

o

ey
-
s

N

-
N

@
-
)

'

-
S

o

-
o

Figure: I, ® L Figure: R® I,

e Individually both approximations miss out on a lot of cross-moments.
e Should combine both to approximate the remaining cross-moments?



CASPR Update

e CASPR update forp =2 is:
. ~1/4 ~1/4y 15\ ?. .
X, = ((Rt & Iy + I, ® L )/2) W= Wh g — nXegr,
e Expanding the update gives:

Wii1 = W; —n (L;l/ 2G, 4+ 2L, Y4 G RV 4 Gth_l/2)



Comparison with Shampoo Update

CASPR update

| Shampoo update

Update preconditioners:

Ly =L 1+ GG,

Rt = Rt—l =l GtT Gt

Compute L~1/4 R-1/4

Precondition gradient and update parameters:

U, = L7Y4G, + G.R7Y?
o= LY, + U RS
Wt = Wt—l - T]Ut

U, = LY G, R

W; .= Wi_1 — nU;




Regret Bound Analysis

e \We conduct analysis in online convex optimization framework.

Theorem (Regret upper bound of CASPR Algorithm)

Given that the loss functions f, : R™*" — R, Vt € [T] are convex and
G-Lipschitz in £3-norm i.e., ||V (W)|, < G, W € R™*" , Algorithm 1
incurs the following regret

zT: ft(Wt) - ft(W*) S @Dtl’ (((L;-l/4 (029 In + Im ® R;l/4)/2) —2)
=1
<V2rDtr (LlT/4 2 RlT/4) _ O(/T)

when n = D//2r, where r = max; rank(G;), D = ||W; — W*||¢

e CASPR has tighter regret upper bound than Shampoo.



Autoregressive Large Language Modeling

e GLU based decoder-only transformer models trained on C4 dataset.

160 billion tokens 42 billion tokens

3.90 2.90
- Shampoo 3.546 = Shampoo 2.802
3.85 —— CASPR 3.518 588 —— CASPR 2.794
,4? 3.80 B’
g g 2.86
<L 3.75 8 2.
= £
[} o
23.70 2
o © 2.84
S S
= 365 P
] (o}
53.60 5282
3.55 56
3.50
4000 6000 8000 10000 12000 14000 16000 18000 2000 90000 100000110000 120000 130000 140000 150000 160000
steps steps

a) 8192 batch size and 14M parameters b) 256 batch size and 234M parameters.



GNN and Transformer on Parts of Speech
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Time taken for Shampoo and CASPR are about the same.
CASPR has a better Validation Accuracy than Shampoo.
CASPR is better than AdamW when run for fixed amount of time.




Conclusion and Future Directions

e Novel Kronecker-sum inspired combination approach to approximate the
second-moment matrix using axes preconditioners.

e Stronger convergence guarantees than Shampoo, which is a special case of
our framework of combining axes preconditioners.

e More accurate axes preconditioners solving the problem

Flt = arg min HI:I — H;
HeS

F

e Adapt CASPR to approximate Hessian instead of full-matrix Adagrad.



