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General Setting of Operator Learning

We consider pairs of functions (uj, vj)Nj=1, where uj is drawn from a probability measure µ and vj = G(uj). Given the data
(uj, vj)Nj=1, we approximate G, by solving the network parameter set θ via an optimization problem:

min
θ∈Θ

L(θ) := min
θ∈Θ

1
N

N∑
j=1

[
‖G̃θ(uj) − vj‖2

]
. (1)

General Neural Operator

To begin, we define the following shallow neural operators with n neurons for operators from X to Y as

O(u) =
n∑

i=1
Aiσ (Wiu + Bi) ∀u ∈ X (2)

where Wi ∈ L(X , Y), Bi ∈ Y , and Ai ∈ L(Y , Y). Here, L(X , Y) denotes the set of all bounded (continuous) linear operators
between X and Y , and σ : 7→R defines the nonlinear point-wise activation.

Analogy between Neural Network and Neural Operator

X = [0, 1]d, Y = Rk ⇒
[
W`

]
ij

∈ R ⇒ DNNs for function approximation.

X = [0, 1]d×d×c, Y = Rk ⇒
[
W`

]
ij
is convolution ⇒ CNNs for image tasks.

X = function space, Y = function space ⇒
[
W`

]
ij

∈ L(Y , Y) ⇒ neural operators

Furthermore, we have the following universal approximation theorem based on this unified definition of shallow networks.

Theorem (Universal Approximation)

Let X = Hs(Ω) and Y = Hs′(Ω) for some s, s′ ≥ 1, and σ ∈ C(R) is non-polynomial, for any continuous operator O∗ : X 7→ Y , compact

set C ⊂ X and ε > 0, there is n such that

inf
O∈Ξn

sup
u∈C

‖O∗(u) − O(u)‖Y ≤ ε, (3)

where Ξn denote the shallow networks defined in equation 2 with n neurons.

Revisit W` as Solving PDEs

Consider the elliptic PDEs given by Lu(x) = f (x) defined over the domain Ω = (0, 1)2 and subject to boundary conditions.
Employing a linear finite element method (FEM) discretization with a mesh size defined as h = 1

d, the discretized system can be

expressed as:

A ∗ u = f, (4)

where u, f ∈ Rd×d.

A∗u represents the standard convolutional operation for a single channel, with specific padding schemes determined by the
boundary conditions;

A, of dimensions 3 × 3, is dictated by the elliptic operator L in conjunction with the linear FEM.

Consequently, the inverse operation of A∗ corresponds to the discrete Green’s function associated with L under a linear FEM
framework. Solving equation 4 can be precisely represented as a conventional convolution neural network.

Parametrization of W` and MgNO

We provide a concise overview of the essential components of multigrid structure in the language of convolution as an operator

mapping from f to u:

1. Input (f ) and Initialization: Set f1 = f and initialize with u1,0 = 0.

2. Iteration (Smoothing) Process: The algorithm iteratively refines u based on the relation:

u`,i = u`,i−1 + B`,i ∗
(
f ` − A` ∗ u`,i−1) , (5)

where ` = 1 : J and i ≤ ν`.

3. Hierarchical Structure via Restriction and Prolongation: The superscript ` denotes the specific hierarchical level or grid within
the multigrid structure. Specifically, using the residual, we restrict the input f ` and the current state u` to a coarser level

through convolution with a stride of 2:

f `+1 = R`+1
` ∗2

(
f ` − A` ∗ u`

)
∈ Rd`+1×d`+1×n, u`+1,0 = 0. (6)

Subsequently, we apply the smoothing iteration as in equation 5 to derive the correction from the coarser level. The

correction is then prolonged from the coarser to the finer level using a de-convolution operation P `
`+1 with a stride of 2 (acting

as the transpose of the restriction operation).

Approximation Property

Let’s represent the linear operator defined by the aforementioned V-cycle multigrid operator as WMg. The convergence result

presented in [2].

‖u − WMg(A ∗ u)‖A ≤
(

1 − 1
c

)
‖u‖A, (7)

demonstrates the uniform approximation capabilities of WMg relative to the inverse of A∗, which corresponds to the Green’s
function associated with the elliptic operator L. Here, c is a constant that is independent of the mesh size h, and ‖u‖2

A =
(u, A ∗ u)L2(Ω) denotes the energy norm.

Figure 1. Overview ofWMg using a multi-channel V-cycle multigrid framework MgNet [1].

Key features of MgNO

1. Commonly used lifting and projecting operators in traditional constructs are unnecessary in MgNO.

2. Our method establishes its superiority not only in prediction accuracy but also in efficiency, both in terms of parameter count

and runtime on several PDEs, including Darcy, Helmholtz, and Navier-Stokes equations, with different boundary conditions.

3. Given the inherent ties between convolutions and multigrid methods in PDE contexts, MgNO naturally accommodates

various boundary conditions.

4. Interesting observation: No gap between training and test errors, as shown in Figure 3.

Numerical Results

The Darcy equation writes {
−∇ · (a(x)∇u(x)) = f (x) x ∈ D

u(x) = 0 x ∈ ∂D
(8)

where the coefficient 0 < amin ≤ a(x) ≤ amax, ∀x ∈ D, and the forcing term f ∈ H−1(D;R). The coefficient to solution map is
S : L∞(D;R+) → H1

0(D;R), such that u = S(a) is the target operator.
Table 1. Performance comparison for Darcy benchmarks. Performance are measured with relative L2 errors (×10−2) and relative H1 errors (×10−2).

Darcy smooth Darcy rough Darcy multiscale

Model time (s/iter) params (m) L2 H1 L2 H1 L2 H1

FNO2D 7.4 2.37 0.684 2.583 1.613 7.516 1.800 9.619
DilResNet 14.9 1.04 4.104 5.815 7.347 12.44 1.417 3.528
UNet 9.1 17.27 2.169 4.885 3.519 5.795 1.425 5.012
U-NO 11.4 16.39 0.492 1.276 1.023 3.784 1.187 5.380
MWT 21.7 9.80 — — 1.138 4.107 1.021 7.245
GT 38.2 2.22 0.945 3.365 1.790 6.269 1.052 8.207
MgNO 6.6 0.57 0.176 0.576 0.339 1.380 0.715 1.756

Figure 2. Qualitative comparisons on Darcy rough benchmark. Top: coefficient a, ground truth u, and predictions; bottom: the corresponding prediction
error map for each model in the same color scale.

Figure 3. Comparison of generalization error between MgNO, FNO and UNO.

Figure 4. Wavefield Prediction for Ultrasound Breast Examination. The neural operator maps the sound speed c(x) and point source f to the wave field

solution u such that −∆u − ω2

c2(x)u = f with absorbing boundary condition. New results from this study will be detailed in an upcoming manuscript. Stay

tuned for more information! Data utilized in this study is credited to Bohrium.
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