

● 香港科技大學(廣州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition

Action Recognition, SNN, Event Camera

Hongwei Ren, Yue Zhou, Xiaopeng Lin, Yulong Huang, Haotian Fu, Jie Song, Bojun Cheng*

Neuro. Elec & Pho. Lab

Ren H, Zhou Y, Haotian F U, et al. SpikePoint: An Efficient Point-based Spiking Neural Network for Event Cameras Action Recognition[C]//The Twelfth International Conference on Learning Representations. 2023.

Background

Event Cameras

• High dynamic range.

- Low Latency.
- Low Power Consumption.
- Fast Motion Handling.
- Robust to Motion Blur.

Spiking Neural Network

- Binary information.
- Biologically inspired network.
- Low Power Consumption.

Ultra-low-power Application (action recognition)

Source link: https://pypi.org/project/snntorch/

Background

Point Cloud

Ū

- Sparsity.
- (x,y,z).
- Permutation invariance.

Different Event-based Method

- 1. Time-consuming Representation conversion.
- 2. Mature backbone network for Frame (VGG, ResNet, VIT).
- 3. Dense Computing and Synchronization(not match for DVS).
- 4. High Accuracy than point-based method.

Preprocessing

1. Ignore events' polarity.

 $\mathcal{E} = \{e_k = (x_k, y_k, t_k, p_k) \mid k = 1, \dots, n\}$

2. Divided by sliding window.

$$\mathcal{P}_i = \{e_{j \to l} \mid t_l - t_j = R\} \quad i = 1, \dots, m$$

3. Down-sampling (1024 events) and normalization.

$$PN_i = \left(\frac{X_i}{w}, \frac{Y_i}{h}, \frac{T_i - t_j}{t_l - t_j}\right)$$

4. Sampling and Grouping. $PS_i = FPS(PN_i) \quad PG_i = KNN(PN_i, PS_i)$ 5. Standardization. $[\Delta x, \Delta y, \Delta z] = \frac{\mathcal{G} - \text{Centroid}}{SD(\mathcal{G})} \sim N(0, 1), \quad SD(\mathcal{G}) = \sqrt{\frac{\sum_{i=1}^{n} (g_i - \bar{g})^2}{n-1}} \quad g_i \in \mathcal{G}$ 6. Rate Coding. Challenge!

Challenge: Sampling and Grouping ジン ICLR 「新港科技大学(广州) THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY (GUANGZHOU)

$$[\Delta x, \Delta y, \Delta z] = \frac{\mathcal{G} - \text{Centroid}}{/SD(\mathcal{G})} \sim N(0, 1)$$

There is a negative value that cannot be spike encoded.

$$[\Delta x, \Delta y, \Delta z] = \frac{\mathcal{G} - \text{Centroid}}{SD(\mathcal{G})} \sim N(0, 1)$$

Visualization the shift of absolute operation. (a) The spatial coordinate of $[x_{min}, y_{min}, z_{min}]$ and $[x_c, y_c, z_c]$. (b) The transformation of the distribution after taking absolute.

UU

Take absolute values, but the data distribution will shift.

$$f(x;\mu,\delta^2) = \frac{1}{\sqrt{2\pi}\delta} e^{-\frac{(x-\mu)^2}{2\delta^2}} \to \frac{1}{\sqrt{2\pi}\delta} \left(e^{-\frac{(x-\mu)^2}{2\delta^2}} + e^{-\frac{(x+\mu)^2}{2\delta^2}} \right) (x \ge 0)$$
$$\dot{\mu} = \int_0^\infty x \frac{1}{\sqrt{2\pi}} \left(e^{-\frac{x^2}{2}} + e^{-\frac{x^2}{2}} \right) dx = \sqrt{\frac{2}{\pi}} \int_0^\infty x e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-\frac{x^2}{2}} d(\frac{x^2}{2}) = \sqrt{\frac{2}{\pi}} \int_0^\infty x e^{-\frac{x^2}{2}} dx$$

The performance get better.

No.	$[x_{min}, \dots]$	[<i>x_c</i> ,]	Acc.	
1	٧	×	97.92%	
2	×	٧	96.25%	

By modify the input ($[\Delta x, \Delta y, \Delta z, x_{min}, y_{min}, z_{min}]$), our method results in a 76% reduction in rate encoding error of the coordinates in Daily DVS dataset.

Challenge: Hierarchical Structure

singular stage structure

- 1. Global and local structural module. Maintain high precision.
- 2. Feature extractor designed for SNN, capable of back-propagation training.

$$\Delta W_{ij}^{l} = \frac{\partial L}{\partial W_{ij}^{l}} = \sigma'(I_{i}^{l})S_{j}^{l-1}(\sum_{k} \delta_{k}^{l+1}W_{ik}^{T,l} + \sigma'(I_{i}^{l+m-1} + S_{j}^{l})\sum_{k} \delta_{k}^{l+m}W_{ik}^{T,l+m-1})$$

3. Solve spiking neural network negative coding problem with two-branch architecture.

Ablation of different residual connection.

Experiment

1. DVS 128 Gesture.

Name	Method	Param	Acc
TBR+I3D (Innocenti et al., 2021)	ANN	12.25 M	99.6%
PointNet++ (Qi et al., 2017b)	ANN	1.48 M	95.3%
EV-VGCNN (Deng et al., 2021)	ANN	0.82 M	95.7%
VMV-GCN (Xie et al., 2022)	ANN	0.86 M	97.5%
SEW-ResNet (Fang et al., 2021a)	SNN	-	97.9%
Deep SNN(16 layers) (Amir et al., 2017)	SNN	-	91.8%
Deep SNN(8 layers) (Shrestha & Orchard, 2018)	SNN	-	93.6%
Conv-RNN SNN(5 layers)(Xing et al., 2020)	SNN	-	92.0%
Conv+Reservoir SNN (George et al., 2020)	SNN	-	65.0%
HMAX-based SNN (Liu et al., 2020)	SNN	-	70.1%
Motion-based SNN (Liu et al., 2021a)	SNN	-	92.7%
SpikePoint	SNN	0.58 M	98.74%

2. Daily DVS.

Name	Method	Param	Acc
I3D(Carreira & Zisserman, 2017)	ANN	49.19 M	96.2%
TANet(Liu et al., 2021b)	ANN	24.8 M	96.5%
VMV-GCN (Xie et al., 2022)	ANN	0.84 M	94.1%
TimeSformer (Bertasius et al., 2021)	ANN	121.27 M	90.6%
HMAX-based SNN (Xiao et al., 2019)	SNN	-	68.3%
HMAX-based SNN (Liu et al., 2020)	SNN	-	76.9%
Motion-based SNN (Liu et al., 2021a)	SNN	-	90.3%
SpikePoint	SNN	0.16 M	97.92 %

Summary

- 1. Minimal number of parameters.
- 2. Super high accuracy (results better than most ANNs).
- 3. Training by back-propagation, not ANN2SNN.
- 4. Low power consumption Real-time action recognition applications.

7

3. DVS Action.

Name	Method	Param	Acc
ST-EVNet (Wang et al., 2020)	ANN	1.6 M	88.7%
PointNet (Qi et al., 2017a)	ANN	3.46 M	75.1%
Deep SNN(6 layers) (Gu et al., 2019)	SNN	-	71.2%
HMAX-based SNN (Xiao et al., 2019)	SNN	-	55.0%
Motion-based SNN (Liu et al., 2021a)	SNN	-	78.1%
SpikePoint	SNN	0.16 M	90.6%

4. HMDB51-DVS

Name	Method	Param	Acc
C3D (Tran et al., 2015)	ANN	78.41 M	41.7%
I3D (Carreira & Zisserman, 2017)	ANN	12.37 M	46.6%
ResNet-34 (He et al., 2016)	ANN	63.7 M	43.8%
ResNext-50 (Hara et al., 2018)	ANN	26.5 M	39.4%
P3D-63 (Qiu et al., 2017)	ANN	25.74 M	40.4%
RG-CNN (Bi et al., 2020)	ANN	3.86 M	51.5%
SpikePoint	SNN	0.79 M	55.6%

Power consumption.

5. UCF101-DVS

Name	Method	Param	Acc
RG-CNN +Incep.3D (Bi et al., 2020)	ANN	6.95M	63.2%
I3D (Carreira & Zisserman, 2017)	ANN	12.4M	63.5%
ResNext-50 (Hara et al., 2018)	ANN	26.05M	60.2%
ECSNet-SES (Chen et al., 2022)	ANN	-	70.2%
Res-SNN-18 (Fang et al., 2021a)	SNN	-	57.8%
RM-RES-SNN-18 (Yao et al., 2023)	SNN	-	58.5%
SpikePoint	SNN	1.05M	68.46%

Model	Input	Timestep	Accuracy(%)	OPs(G)	Dynamic(mJ)	Para.(M)	Static(mJ)
SpikePoint	Point	16	98.7	0.9	0.82	0.58	0.756
SEW-ResNet(tdBN)[1]	Frame	40	96.9	4.79	4.36	11.7	15.305
Spikingformer[2]	Frame	16	98.3	3.72	4.26	2.6	3.401
Spikformer[3]	Frame	16	97.9	6.33	10.75	2.6	3.401
Deep $SNN(16)[4]$	Frame	16	91.8	2.74	2.49	1.7	2.223
Deep $SNN(8)[5]$	Frame	16	93.6	2.13	1.94	1.3	1.7
PLIF [6]	Frame	20	97.6	2.98	2.71	17.4	22.759
TBR+I3D [7]	Frame	ANN	99.6	38.82	178.6	12.25	160.23
Event Frames+I3D [8]	Frame	ANN	96.5	30.11	138.5	12.37	16.18
RG-CNN [9]	voxel	ANN	96.1	0.79	3.63	19.46	25.45
ACE-BET [10]	voxel	ANN	98.8	2.27	10.44	11.2	14.65
VMV-GCN [11]	voxel	ANN	97.5	0.33	1.52	0.84	1.098
PoinNet++ [12]	point	ANN	95.3	0.872	4.01	1.48	1.936

Thank You!

Hongwei Ren

