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Molecular Representation Learning
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→→ →→→ →

Wang, Yuyang, et al. "Molecular contrastive learning of representations via 
graph neural networks." Nature Machine Intelligence



Molecular Representation Learning
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→→ →→→ →

Wang, Yuyang, et al. "Molecular contrastive learning of 
representations via graph neural networks." Nature Machine 
Intelligence

• Molecules with similar structures can have very 
different effects in the cellular context.



High-content Drug Screens 
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Chandrasekaran, Srinivas Niranj, et al. "Image-based profiling for drug discovery: 
due for a machine-learning upgrade?." Nature Reviews Drug Discovery

• Output post-perturbation (i.e., after the application 
of a drug) cellular images and gene expression.

→ →
Healthy and diseased 
patient cell lines 

Drugs or genetic 
perturbations 

High-throughput staining 
and imaging: e.g. Cell 
Painting assay 

→
Drug screens



Chemical Structure and High-content Drug Screens
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Moshkov, Nikita, et al. "Predicting compound activity from phenotypic profiles 
and chemical structures." Nature Communications

• High-content drug screens improve our understanding of the biological effect of a 
compound. However, due to experimental constraint, we can’t screen each molecule in wet-
lab, and multimodal molecular representations are necessary.



Batch effect!
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Moshkov, Nikita, et al. "Predicting compound activity from phenotypic profiles 
and chemical structures." Nature Communications

• In molecular biology, a batch effect is a change in data that is caused by non-biological 
factors in an experiment. Batch effects can lead to inaccurate conclusions if their causes are 
correlated with outcomes of interest in an experiment.



Batch effect!
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• The batch identifier is predictable from both the phenotypic screens (batch effect) and the 
molecular structure (batch confounder).

• For example, in Bray 2017 dataset:

• CellProfiler features: accuracy > 90% (versus 1% with a random predictor)

• Molecular structure + mol2vec featurizer: accuracy ~50%



Relation to Conditional Mutual Information
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• 𝑋$ : Drug structure

• 𝑋% : Experimental batch number

• 𝑋& : Phenotypic change induced by drug perturbation



Relation to Conditional Mutual Information
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• 𝑋$ : Drug structure

• 𝑋% : Experimental batch number

• 𝑋& : Phenotypic change induced by drug perturbation

Further justified in Robinson et al., 2021 and Ma et al., 2021



Relation to Conditional Mutual Information
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This objective function emphasizes drug’s bioactivity by focusing on shared features of the two 
modalities that are unrelated to batch

• CLIP → Conditional CLIP with negatives drawn from 𝑝(𝑧$|𝑥%) and 𝑝(𝑧&|𝑥%) [Ma et al., 2021]



InfoNCE as a lower bound to Mutual Information 
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• Success of InfoNCE is based on maximizing mutual information 𝐼(𝑋; 𝑍) ≥ 𝐼(𝑍; 𝑍1)

Positive

Negatives

• Bi-modal contrastive learning, the InfoNCE objective → CLIP

Positive Image pair Positive Text pair

Negative Image pair Negative Text pair



InfoNCE as a lower bound to Mutual Information 
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• Success of InfoNCE is based on maximizing mutual information 𝐼(𝑋; 𝑍) ≥ 𝐼(𝑍; 𝑍1)



InfoCORE
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Variables for anchor-positive pair

Negatives

Posterior reweighing

Classification Loss

constant



InfoCORE — Reweighting Factor Estimation
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• Estimating posterior distribution of batch given both modalities is challenging

• The corresponding empirical observations are absent (especially when 𝑖 ≠ 1)

• Poor OOD generalization 

• Computationally intensive for each pair

Tradeoff between CLIP and bias removal



Advantages of estimating batch distribution
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• Confounding varies across batches — some batches might still have random assignment

• Using latents implicitly adjusts training to stop reweighing when debiasing is complete! 



Synthetic Simulation — Data generation 
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• Randomly assign a real effect identifier (1-5) and a batch effect identifier (1-25) to each of the 
1250 samples.

• Each category ≡ 10-D random Gaussian vector

• Each sample (x) ≡ 30-D vector of real effect, batch effect, noise

• 𝑚1 = MLP1(𝑥) and 𝑚; = MLP;(𝑥) represent paired modality data



Experimental Results — Synthetic Simulation
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Can’t identify real effect



Experimental Results — Synthetic Simulation

18



Experimental Results — Dataset

19

L1000 gene expression profiles (Subramanian 
et al., 2017)
• Nine core cell lines tested for 17,753 drugs
• In total — 82,914 drug-cell line pairs

Cell imaging profiles obtained from the Cell 
Painting assay (Bray et al., 2017)
• 30,204 small molecules screened in one cell line 

i.e. U2OS (a human bone cancer cell line)
• Hand crafted features through CellProfiler

Drug Chemical Structure
• Mol2vec to get features

e.g. A549 (Lung Cancer), MCF-7 (Breast Cancer)



Experimental Results — Drug Representations
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• The drug discovery task ≡ identify molecules (e.g., from a drug repurposing library) that are 
most likely to induce a given desired phenotypic change (i.e., gene expression change from 
diseased towards normal).

• Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval 
library (whole / batch) that are most likely to induce a given phenotypic change.

All molecules in 
held-out set

held-out set molecules 
that are in the same
experimental batch as 
the retrieving target



Experimental Results — Drug Representations
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• Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval 
library (whole / batch) that are most likely to induce a given phenotypic change.

CCL — Few 
negatives in the 
same batch

CLIP — Biased



Experimental Results — Drug Representations
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• Molecular property prediction (bioactivity) downstream task

Post-
Perturbation 
Cell Viability 

Blood-Brain 
Barrier 
Penetration

Clinical 
Toxicity

Human 
Immunodeficiency 
Virus

→ → →

Side 
Effect 
Resource

→



Experimental Results — Representation Fairness
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Equalized Odds (EO): sum 
of the absolute difference 
of TPR and FPR of the 
model predictions 
between two groups

Equality of 
opportunity (EOPP):
absolute difference of 
TPR of the model 
predictions between 
two groups



Thank You
Questions?
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