Removing Biases from Molecular Representations via Information Maximization

Joint work with

Chenyu Wang

Sharut Gupta

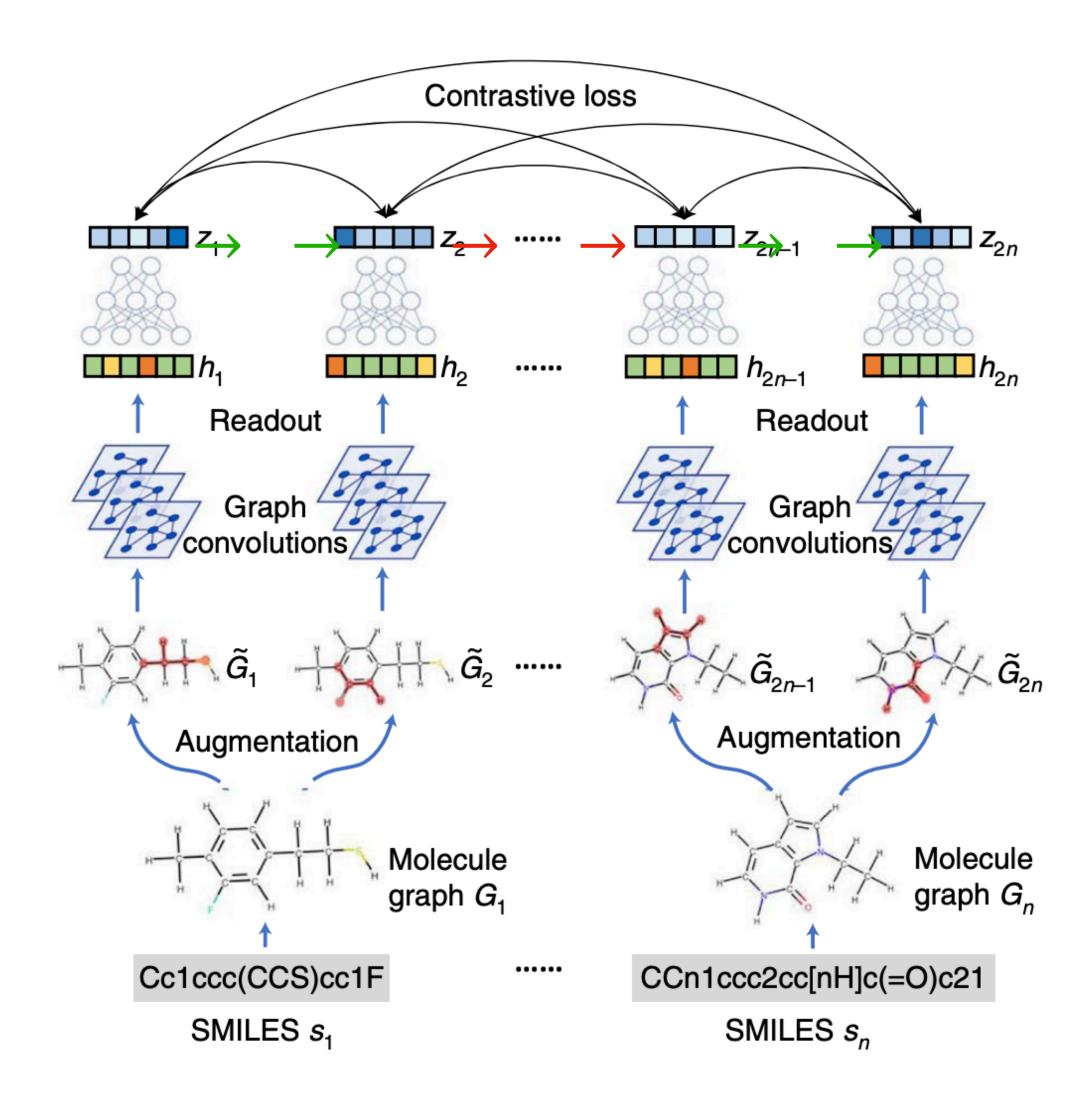
ERIC AND WENDY

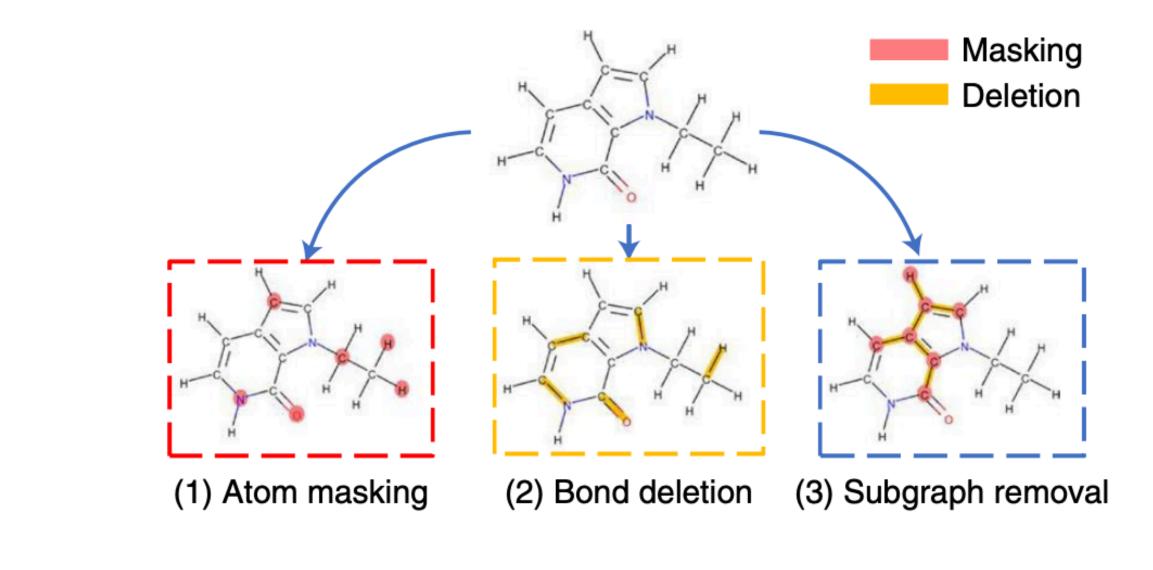
AT BROAD INSTITUTE

Caroline Uhler

Tommi Jaakkola

Molecular Representation Learning

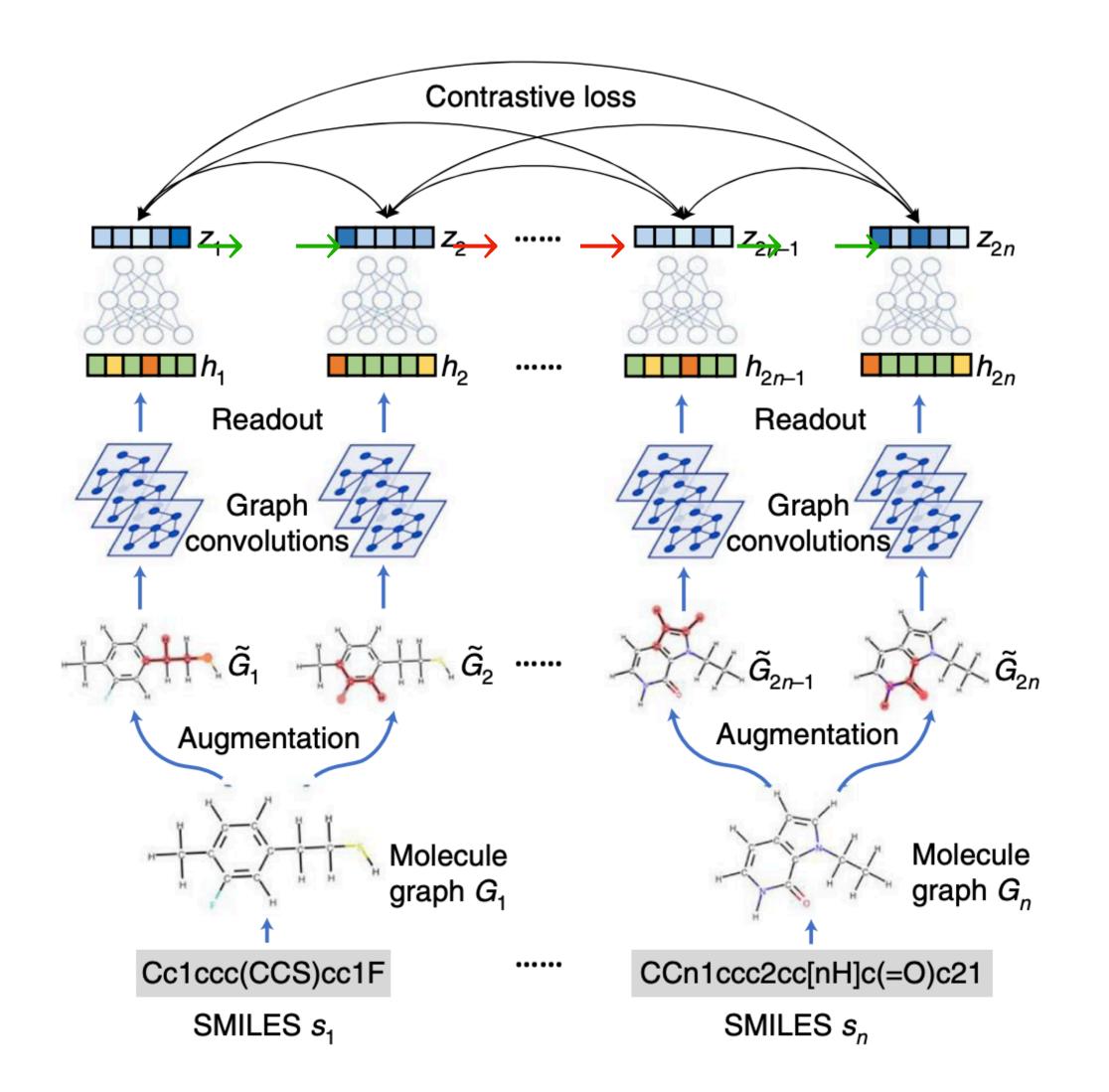




Wang, Yuyang, et al. "Molecular contrastive learning of representations via graph neural networks." Nature Machine Intelligence

Molecular Representation Learning

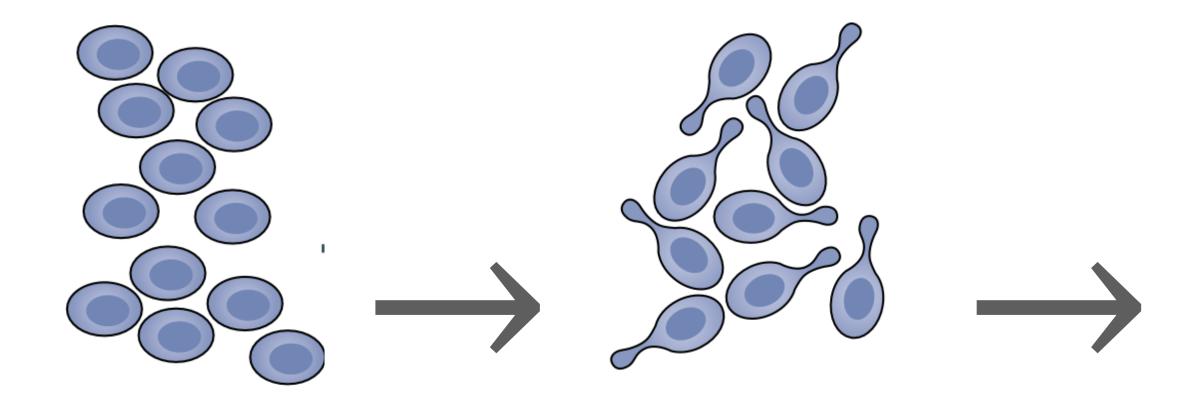
Molecules with **similar** structures can have very different effects in the cellular context.



Wang, Yuyang, et al. "Molecular contrastive learning of representations via graph neural networks." Nature Machine Intelligence

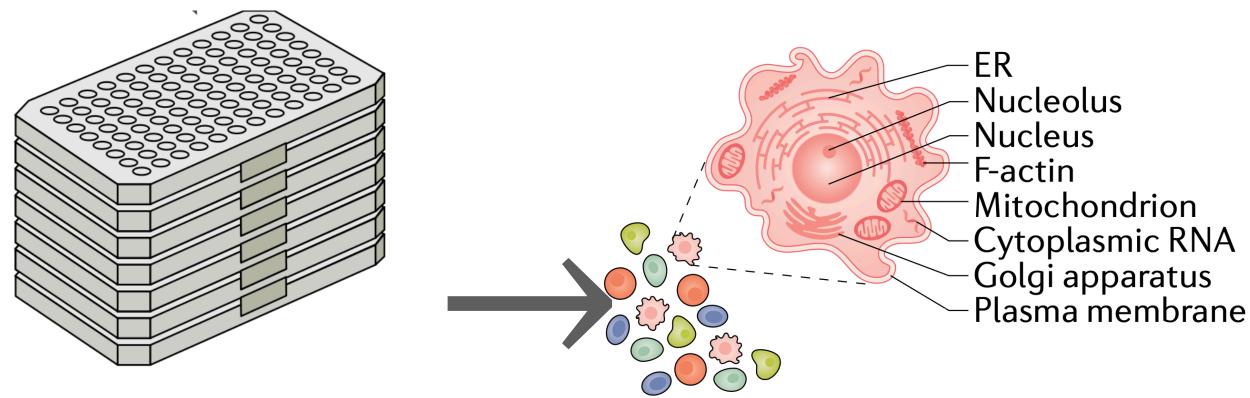
High-content Drug Screens

• Output post-perturbation (i.e., after the application of a drug) cellular images and gene expression.



Healthy and diseased patient cell lines

Drugs or genetic perturbations



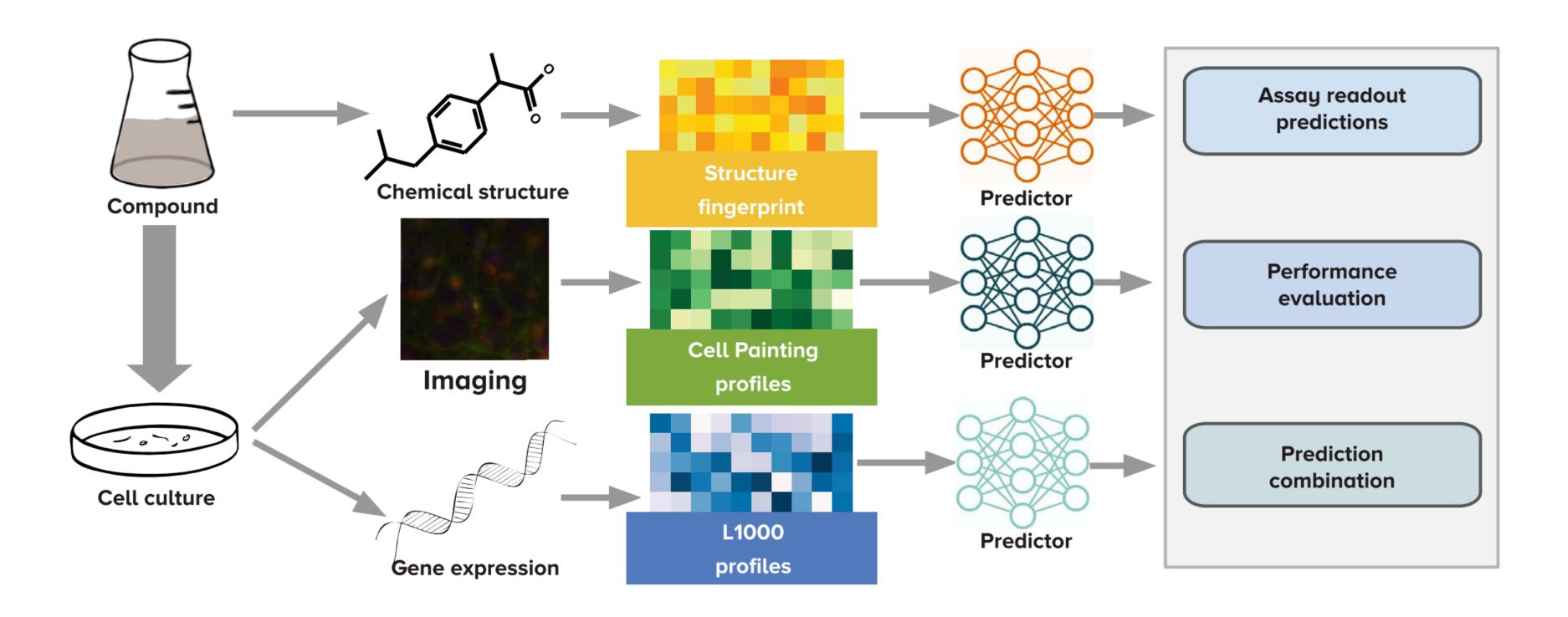
High-throughput staining and imaging: e.g. Cell Painting assay

Drug screens

Chandrasekaran, Srinivas Niranj, et al. "Image-based profiling for drug discovery: due for a machine-learning upgrade?." Nature Reviews Drug Discovery

Chemical Structure and High-content Drug Screens

High-content drug screens improve our understanding of the biological effect of a lab, and multimodal molecular representations are necessary.



compound. However, due to experimental constraint, we can't screen each molecule in wet-

Moshkov, Nikita, et al. "Predicting compound activity from phenotypic profiles and chemical structures." Nature Communications

Batch effect!

correlated with outcomes of interest in an experiment.

• In molecular biology, a batch effect is a change in data that is caused by **non-biological** factors in an experiment. Batch effects can lead to inaccurate conclusions if their causes are

Moshkov, Nikita, et al. "Predicting compound activity from phenotypic profiles and chemical structures." Nature Communications

Batch effect!

- molecular structure (batch confounder).
- For example, in *Bray 2017 dataset*:

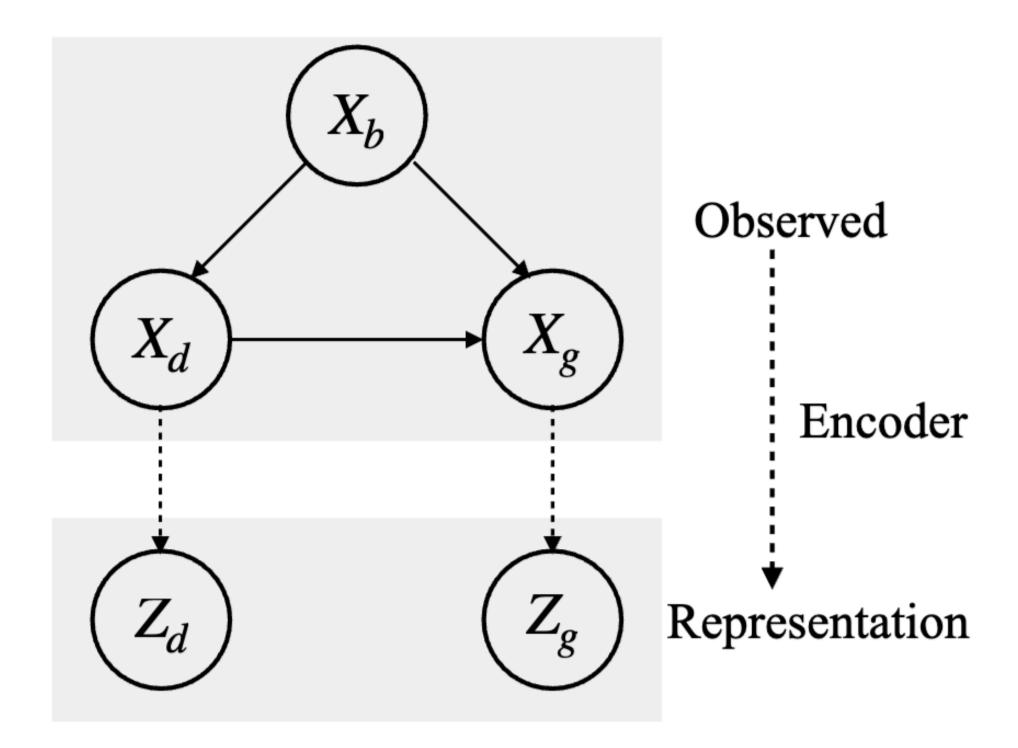
 - Molecular structure + mol2vec featurizer: accuracy ~50%

• The batch identifier is predictable from both the phenotypic screens (batch effect) and the

• CellProfiler features: accuracy > 90% (versus 1% with a random predictor)

Relation to Conditional Mutual Information

- X_d : Drug structure
- X_b : Experimental batch number
- X_g : Phenotypic change induced by drug perturbation

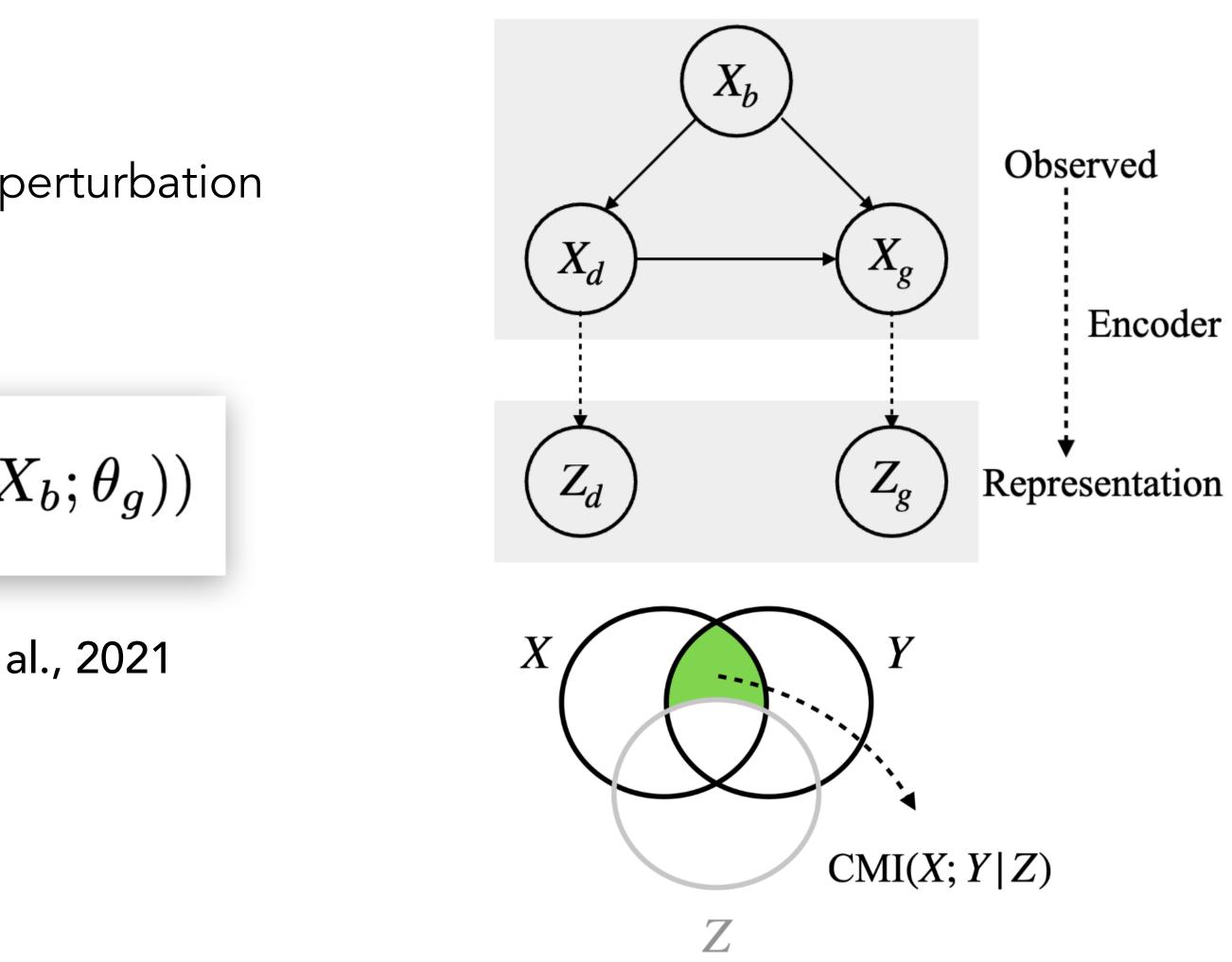


Relation to Conditional Mutual Information

- X_d : Drug structure
- X_b : Experimental batch number
- X_g : Phenotypic change induced by drug perturbation

$$\max_{\theta_d, \theta_g} \frac{1}{2} \left(I(Z_d; X_g | X_b; \theta_d) + I(Z_g; X_d | X_d) \right)$$

Further justified in Robinson et al., 2021 and Ma et al., 2021

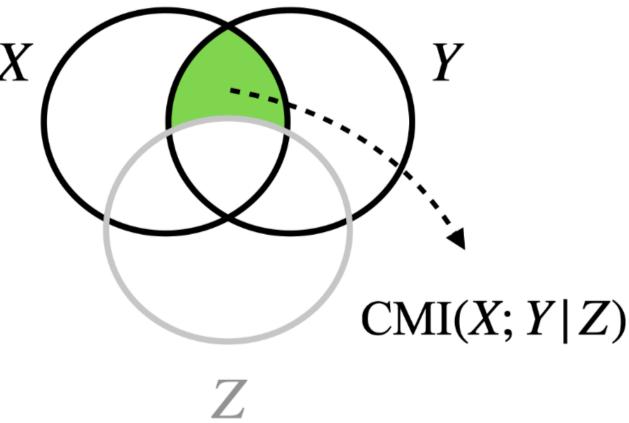


Relation to Conditional Mutual Information

 $\max_{\theta_d,\theta_g} \frac{1}{2} \left(I(Z_d; X_g | X_b; \theta_d) + I(Z_g; X_d | X_b; \theta_g) \right) \ge \max_{\theta_d,\theta_g} I(Z_d; Z_g | X_b; \theta_d, \theta_g)$

This objective function emphasizes drug's bioactivity by focusing on shared features of the two modalities that are **unrelated** to batch

• CLIP \rightarrow Conditional CLIP with negatives drawn from $p(z_d | x_b)$ and $p(z_g | x_b)$ [Ma et al., 2021]



InfoNCE as a lower bound to Mutual Information

• Success of InfoNCE is based on maximizing mutual information $I(X;Z) \ge I(Z;Z^1)$

$$L_{\text{InfoNCE}} = \mathbb{E}_{p(z,z^1)p(z^{2:K})} \left[-\log \frac{e^{f(z,z^1)}}{\frac{1}{K} \sum_{i=1}^{K} e^{f(z,z^i)}} \right] \text{ Negatives}$$

Bi-modal contrastive learning, the InfoNCE

> Positive Image pair Positive Text pair $\left. \frac{1}{z_{I}^{i}} \right| + \mathbb{E}_{p(z_{T}^{1}, z_{I}^{1}) p(z_{T}^{2:K})} \left[-\log \frac{e^{f(z_{T}^{1}, z_{I}^{1})}}{\frac{1}{K} \sum_{i=1}^{K} e^{f(z_{T}^{i}, z_{I}^{1})}} \right] \right]$ tive Image pair Negative Text pair

$$\frac{1}{2} \left[\mathbb{E}_{p(z_T^1, z_I^1) p(z_I^{2:K})} \left[-\log \frac{e^{f(z_T^1, z_I^1)}}{\frac{1}{K} \sum_{i=1}^{K} e^{f(z_T^1, z_I^1)}} \right] \right] \right]$$

E objective
$$\rightarrow$$
 CLIP

InfoNCE as a lower bound to Mutual Information

• Success of InfoNCE is based on maximizing mutual information $I(X;Z) \ge I(Z;Z^1)$

$$I(X_{1};Y) \ge 1 + \mathbb{E}_{p(x_{1:K})p(y|x_{1})} \left[\log \frac{e^{f(x_{1},y)}}{a(y;x_{1:K})} \right] - \mathbb{E}_{p(x_{1:K})p(y)} \left[\frac{e^{f(x_{1},y)}}{a(y;x_{1:K})} \right]$$
$$I(X_{1};Y) \ge \mathbb{E}_{p(x_{1:K})p(y|x_{1})} \left[\log \frac{e^{f(x_{1},y)}}{a(y;x_{1:K})} \right]$$

$$a(y; x_{1:K}) = m(y; x_{1:K}) = \frac{1}{K} \sum_{i=1}^{K} e^{f(x_i, y)}$$

InfoCORE

Variables for anchor-positive pair

Proposition 2. Given samples (z_d^1, z_g^1, x_b^1) drawn from the joint distribution $(Z_d^1, Z_q^1, X_b^1) \sim$ $p(z_d, z_g, x_b)$ and $z_d^{2:K}$ drawn i.i.d. from the marginal distribution $Z_d^i \sim p(z_d)$ for i = 2, ..., K, then the conditional mutual information $I(Z_d^1; Z_q^1 | X_b^1)$ has the following lower bound: Negatives $I(Z_d^1; Z_a^1 | X_b^1) \ge -L$ where $L_{CLIP} = -\frac{1}{2} \left[\mathbb{E}_{p(z_d^1, z_g^1, x_b^1) p(z_d^{2:K})} \right] \log \left[\log \frac{1}{2} \int_{z_d^2} \frac{1}{2} \int_{z_d^2}$ $+ \mathbb{E}_{p(z_d^1, z_g^1, x_b^1) p(z_g^{2:K})} \left[\log \frac{1}{\frac{1}{K}} \right]$ $\frac{L_{\textit{CLF}}}{2} = \frac{1}{2} \left[\mathbb{E}_{p(z_d^1)} \left[D_{\mathrm{KL}} \left(p \left(x_b^1 | z_d^1 \right) \| \hat{p} \right) \right] \right]$ Classification Loss $C = \frac{1}{2} \mathbb{E}_{p(z_d^1, z_g^1, x_b^1)} \left[\log \frac{\hat{p}_g(x_b^1 | z_g^1, x_b^1)}{\hat{p}(x_b^1 | x_b^1)} \right]$

$$L_{CLIP} - L_{CLF} + C - H(X_b^1), \text{ constant}$$
(3)

$$= \frac{e^{f(z_g^1, z_d^1)}}{\frac{1}{K} \sum_{i=1}^{K} e^{f(z_g^1, z_d^i)} \cdot \hat{p}_g(x_b^1 | z_g^1, z_d^i)} \Big] \\ \frac{e^{f(z_g^1, z_d^1)}}{\sum_{i=1}^{K} e^{f(z_g^i, z_d^1)} \cdot \hat{p}_d(x_b^1 | z_g^i, z_d^1)} \Big] \Big], \text{Posterior reweighing} \\ = \frac{e^{f(z_g^1, z_d^1)} \cdot \hat{p}_d(x_b^1 | z_g^1, z_d^1)}{\sum_{i=1}^{K} e^{f(z_g^1, z_d^1)} \cdot \hat{p}_d(x_b^1 | z_g^i, z_d^1)} \Big], \\ = \frac{z_d^1) \cdot \hat{p}_d(x_b^1 | z_g^1, z_d^1)}{|z_g^1| \cdot \hat{p}(x_b^1 | z_d^1)} \Big].$$

InfoCORE — Reweighting Factor Estimation

- Estimating posterior distribution of batch given both modalities is challenging
 - The corresponding empirical observations are absent (especially when $i \neq 1$)
 - Poor OOD generalization
 - Computationally intensive for each pair

Tradeoff between CLIP and bias removal

- $\hat{p}_g(x_b^1|z_g^1, z_d^i) = \alpha \cdot \hat{p}(x_b^1|z_g^1) + (1 \alpha) \cdot \hat{p}(x_b^1|z_d^i), \ \hat{p}_d(x_b^1|z_g^i, z_d^1) = \alpha \cdot \hat{p}(x_b^1|z_d^1) + (1 \alpha) \cdot \hat{p}(x_b^1|z_g^i)$
- **Proposition 3.** When estimating $\hat{p}_g(x_b^1|z_g^1, z_d^i)$ as the weighted average of $\hat{p}(x_b^1|z_q^1)$ and $\hat{p}(x_b^1|z_d^i)$, and analogously for $\hat{p}_d(x_b^1|z_q^i, z_d^1)$, the term C defined in Proposition 2 is lower bounded by zero.
 - $L_{\text{InfoCORE}} = L_{\text{CLIP}} + L_{\text{CLF}}$

Advantages of estimating batch distribution

- Using latents implicitly adjusts training to stop reweighing when debiasing is complete!

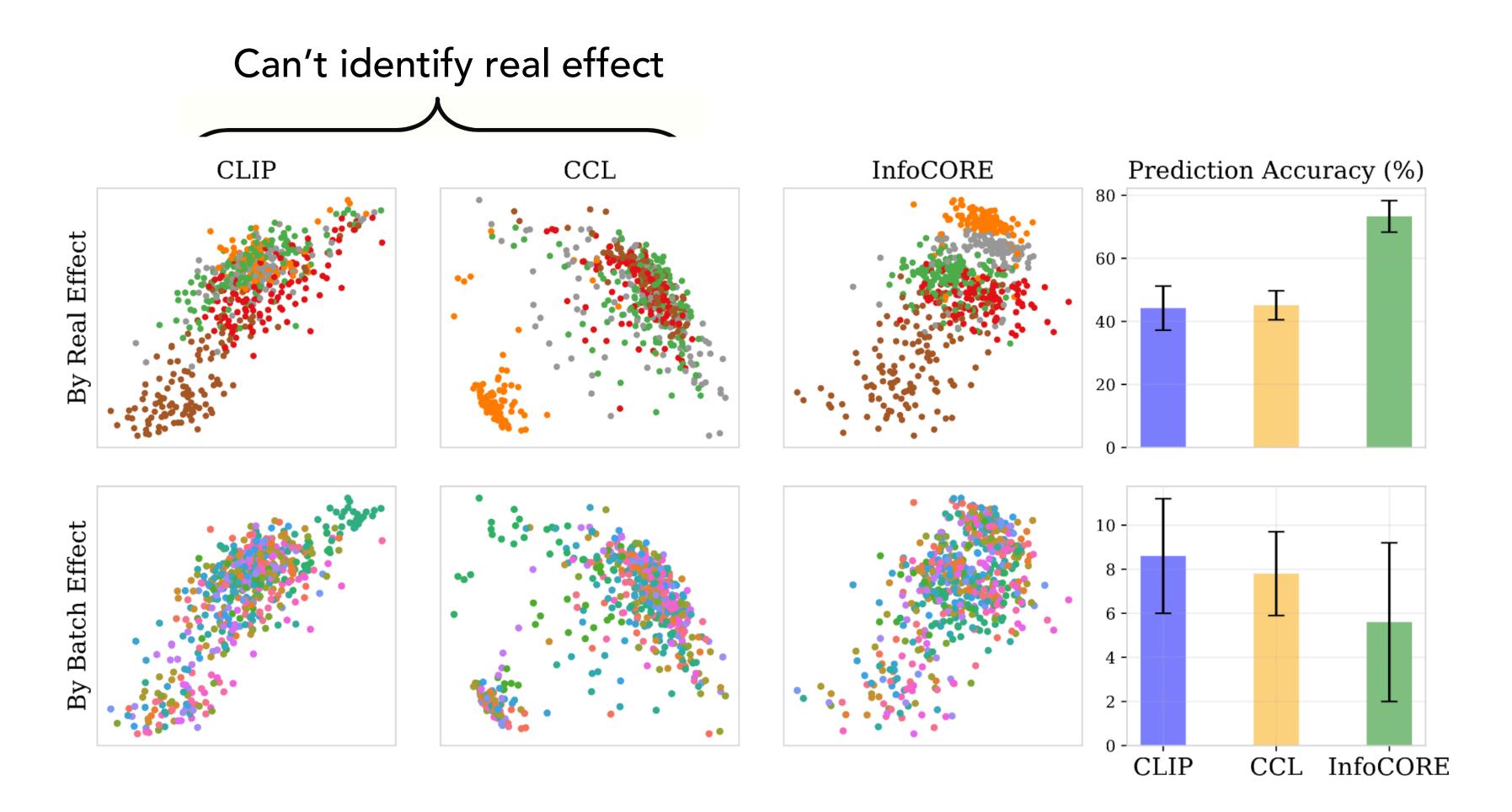
• Confounding varies across batches — some batches might still have random assignment

Synthetic Simulation — Data generation

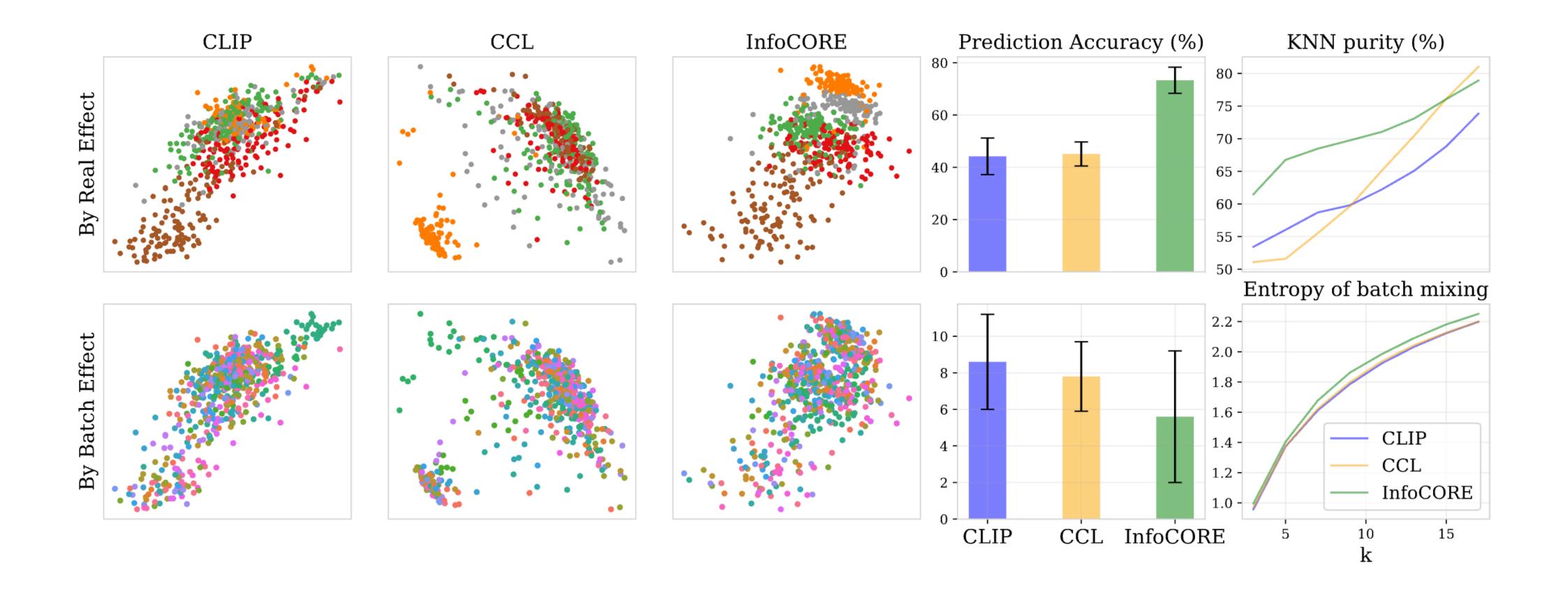
- 1250 samples.
- Each category \equiv 10-D random Gaussian vector
- Each sample (x) \equiv 30-D vector of real effect, batch effect, noise
- $m_1 = MLP_1(x)$ and $m_2 = MLP_2(x)$ represent paired modality data

Randomly assign a real effect identifier (1-5) and a batch effect identifier (1-25) to each of the

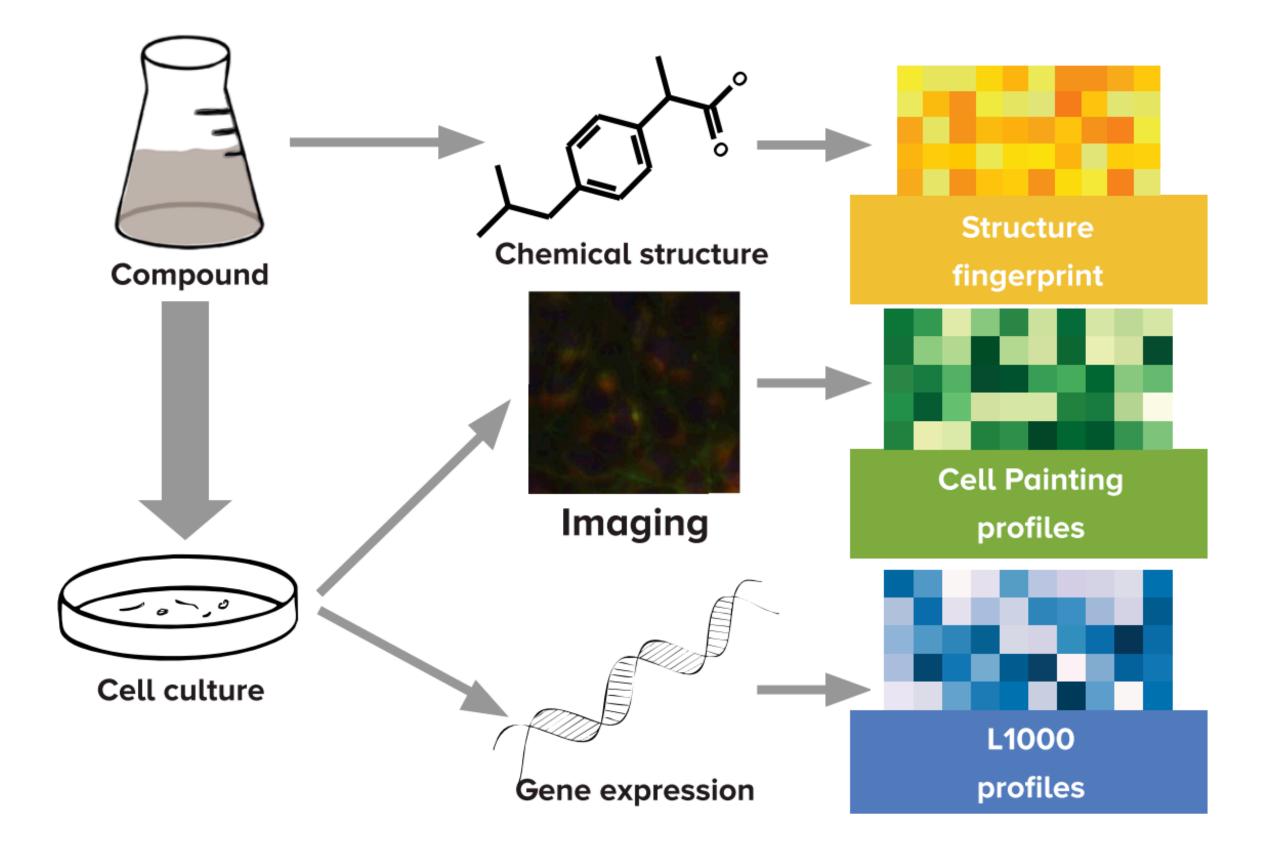
Experimental Results — Synthetic Simulation



Experimental Results — Synthetic Simulation



Experimental Results — Dataset



Drug Chemical Structure

• Mol2vec to get features

Cell imaging profiles obtained from the Cell Painting assay (Bray et al., 2017)

- 30,204 small molecules screened in one cell line i.e. U2OS (a human bone cancer cell line)
- Hand crafted features through *CellProfiler*

L1000 gene expression profiles (Subramanian et al., 2017)

- Nine core cell lines tested for 17,753 drugs
- In total 82,914 drug-cell line pairs

e.g. A549 (Lung Cancer), MCF-7 (Breast Cancer)

Experimental Results — Drug Representations

- diseased towards normal).
- library (whole / batch) that are most likely to induce a given phenotypic change.

All molecules in held-out set

held-out set molecules that are in the same experimental batch as the retrieving target

• The drug discovery task \equiv identify molecules (e.g., from a **drug repurposing library**) that are most likely to induce a given desired phenotypic change (i.e., gene expression change from

Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval

Experimental Results — Drug Representations

library (whole / batch) that are most likely to induce a given phenotypic change.

Dataset		Gene Expression (GE)					Cell Painting (CP)						
Retrieval Library	rieval Library whole		batch			whole			batch				
Top N Acc (%)	N=1	N=5	N=10	N=1	N=5	N=10	N=1	N=5	N=10	N=1	N=5	N=10	
Random	0.03	0.13	0.27	1.58	7.90	15.81	0.02	0.08	0.17	1.59	7.97	15.94	
CLIP	5.96	18.59	27.17	12.23	30.29	42.63	7.23	20.95	28.89	13.20	37.78	52.72	
CCL	1.93	5.85	8.37	12.76	32.39	45.77	1.31	4.93	7.38	13.20	37.99	53.13	
InfoCORE	6.39	18.99	27.18	14.03	33.63	46.78	6.93	20.65	28.22	13.26	38.50	53.13	

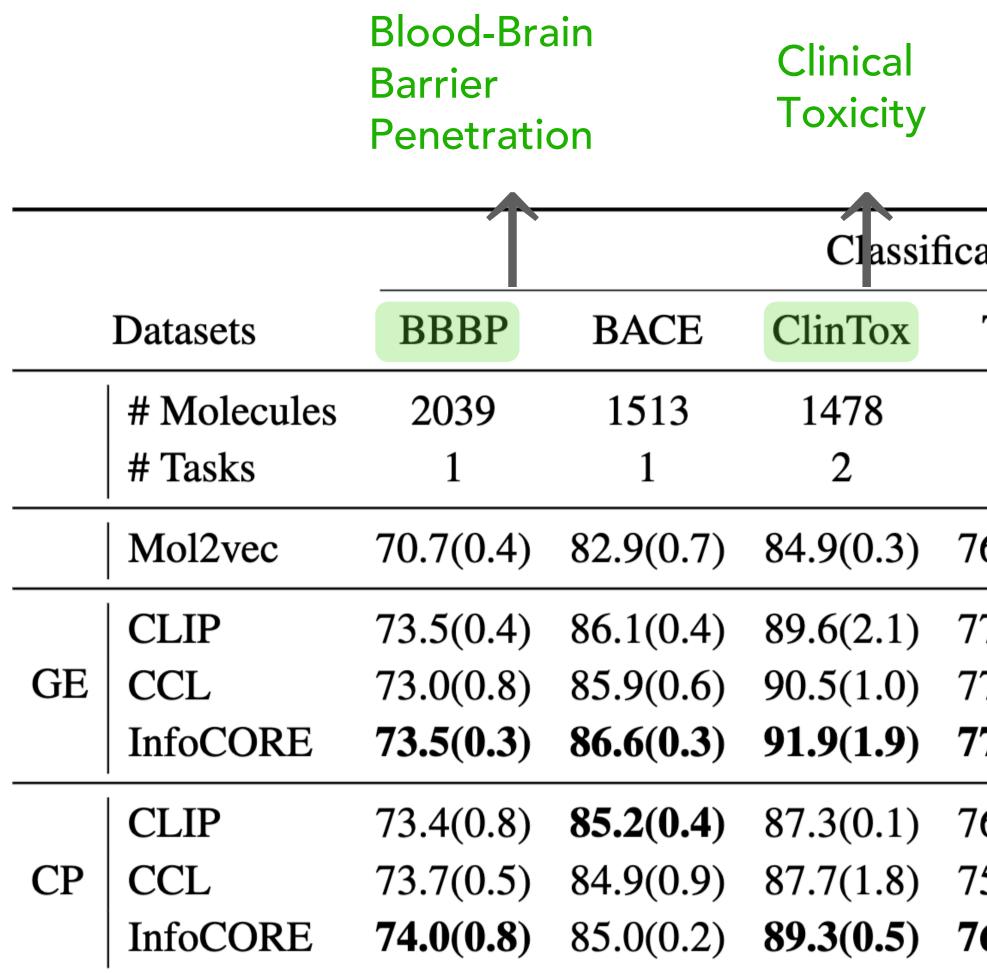
CCL — Few negatives in the same batch

CLIP — Biased

Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval

Experimental Results — Drug Representations

Molecular property prediction (bioactivity) downstream task \bullet



		Side Effect Resource	Human Immuno Virus	deficie	ency	
cation (RC	DC-AUC %)	· ↑			Reg (\mathbb{R}^2 %)	<u></u>
Tox21	ToxCast	SIDER	HIV	Avg.	PRISM	– Post-
7831 12	8575 617	1427 27	41127 1	-	3172 5	Pertu Cell V
76.0(0.1)	74.4(0.5)	64.9(0.3)	77.7(0.1)	75.9	8.5(0.7)	
	75.7(0.6) 75.8(0.2)				13.9(0.4) 16.0(0.5)	
77.4(0.4)	75.7(0.2)	64.8(0.6)	78.5(0.2)	78.3	14.8(0.1)	
76.4(0.1)	76.7(0.1)	64.8(0.6)	78.2(0.4)	77.4	16.2(0.2)	
	75.7(0.4) 76.9(0.1)				14.7(0.3) 16.2(0.3)	

urbation Viability

	UCI Adult			Ι	Law School		Compas			
Method	Acc↑	EO↓	EOPP ↓	Acc↑	EO↓	EOPP↓	Acc↑	EO↓	EOPP↓	
CLIP	85.1(0.1)	20.7(1.8)	15.2(1.7)	83.1(0.2)	30.9(1.4)	7.9(0.8)	60.8(2.3)	18.4(2.4)	11.7(1.9)	
CCL	85.1(0.2)	19.0(3.3)	13.3(2.8)	83.0(0.3)	27.8(1.5)	6.7(0.9)	59.5(2.3)	17.1(3.4)	10.1(3.0)	
InfoCORE	85.2(0.1)	14.9(1.1)	9.7(0.8)	82.7(0.4)	25.4(3.6)	6.0(1.4)	60.1(2.1)	15.3(2.5)	9.3(0.8)	

of TPR and FPR of the model predictions between two groups

absolute difference of TPR of the model predictions between two groups

Experimental Results — Representation Fairness

Thank You **Questions?**