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Molecular Representation Learning

Contrastive loss
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Wang, Yuyang, et al. "Molecular contrastive learning of representations via
graph neural networks." Nature Machine Intelligence



Molecular Representation Learning

e Molecules with similar structures can have very
different effects in the cellular context.

Contrastive loss
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High-content Drug Screens

e Qutput post-perturbation (i.e., after the application
of a drug) cellular images and gene expression.
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Chandrasekaran, Srinivas Niranj, et al. "Image-based profiling for drug discovery:
due for a machine-learning upgrade?." Nature Reviews Drug Discovery



Chemical Structure and High-content Drug Screens

* High-content drug screens improve our understanding of the biological eftect of a
compound. However, due to experimental constraint, we can’t screen each molecule in wet-
lab, and multimodal molecular representations are necessary.
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Batch effect!

* In molecular biology, a batch effect is a change in data that is caused by non-biological
factors in an experiment. Batch effects can lead to inaccurate conclusions if their causes are
correlated with outcomes of interest in an experiment.

Moshkov, Nikita, et al. "Predicting compound activity from phenotypic profiles
6 and chemical structures." Nature Communications



Batch effect!

* The batch identifier is predictable from both the phenotypic screens (batch effect) and the
molecular structure (batch confounder).

* Forexample, in Bray 2017/ dataset:
o CellProtiler features: accuracy > 90% (versus 1% with a random predictor)

* Molecular structure + mol2vec teaturizer: accuracy ~50%



Relation to Conditional Mutual Information

e X4 :Drug structure

e X, : Experimental batch number e

¢ X, Phenotypic change induced by drug perturbation Observed
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Relation to Conditional Mutual Information

e X4 :Drug structure

e X, : Experimental batch number e
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Further justified in Robinson et al., 2021 and Ma et al., 2021 Xm Y
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* X, : Phenotypic change induced by drug perturbation Observed

CMI(X; Y|Z)



Relation to Conditional Mutual Information

1
max o (1(Za; Xl Xv; 0a) + 1(Zg; Xal Xv0)) > max (Za; Zg| Xy; 04, 6,)
d s g d g

This objective function emphasizes drug’s bioactivity by focusing on shared features of the two
modalities that are unrelated to batch

* CLIP — Conditional CLIP with negatives drawn from p(z4|xp) and p(z,4|xp) [Ma et al., 2021]

CMI(X; Y| Z)
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InfoNCE as a lower bound to Mutual Information

e Success of InfoNCE is based on maximizing mutual information I(X;Z) = I(Z; Z1)
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 Bi-modal contrastive learning, the InfoNCE objective — CLIP
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InfoNCE as a lower bound to Mutual Information

e Success of InfoNCE is based on maximizing mutual information I(X;Z) = I(Z; Z1)

I(Xl,Y) >

I[(X1;Y)
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InNfoCORE

Variables for anchor-positive pair

Proposition 2. Given samples (zj,z,,x;) drawn from the joint distribution (Zy,Z,, X;)
p(z4, 24, ) and z3 ™ drawn i.i.d. from the ma igfmal distribution Z ~ p(zq) for i = 2, ..., K, then
the conditional mutual information I(Z;; Z,| X, ) has the following lower bound:

Negatives
1(Zg4; Z4|Xy) > —Leup — Lewr + C — M), constant (3)
1| ' o (zh23) '
Where LCL]P _ — = p(z )p(22 K) log T 4 .
N s B py (a2, 2)
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Classification LossC 1 ) -log po (i |28, 25) - Pa(xp|zt, 25) |
2 “eChepel) | p(xy|2g) - P(xy|2g)
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INfoCORE — Reweighting Factor Estimation

e Estimating posterior distribution of batch given both modalities is challenging

* The corresponding empirical observations are absent (especially when i # 1)
e Poor OOD generalization

e Computationally intensive for each pair

Tradeoff between CLIP and bias removal

Py (h|2g, 22) = - Pab|2g) + (1 — @) - P(xs|2a), Pa(wp|2g, 2a) = @ - P(ap|24) + (1 — @) - p(x3]2,)

Proposition 3. When estimating p,(x; |24, z3) as the weighted average of p(xy|z,) and p(xy|zy), and
analogously for pa(xy|2}, z), the term C defined in Proposition 2 is lower bounded by zero.

Linfocore = Lcrip + LcLF
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Advantages of estimating batch distribution

e Confounding varies across batches — some batches might still have random assignment

e Using latents implicitly adjusts training to stop reweighing when debiasing is complete!
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Synthetic Simulation — Data generation

e Randomly assign a real effect identifier (1-5) and a batch effect identitfier (1-25) to each of the
1250 samples.

e Each category = 10-D random Gaussian vector
e Each sample (x) = 30-D vector of real effect, batch etfect, noise

e my = MLP,(x) and m, = MLE,(x) represent paired modality data

16



Synthetic Simulation
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Synthetic Simulation

Experimental Results

o
= =
> _n
— B | O —i
m/w 1m g Q
— O
W m O O =
3 s S
- - ]
< D
Z, o,
N4 O L
——
-
1 1 _E 1 1
(@] Tp)] @] e} o N o (9] o (e0] ©O <t N O
oo r~ ©~ (] © n N Z ~ - - - - - E
—_ ad
S
: :
© =
=
S —]
< i " “ m
o
@)
.-—.U.
= A,
b
: - — T -
o, @)

80 -
60 -
40 -
20 -
0
10 -
8
6
4-
2
0

CCL InfoCORE

CLIP

109334 [edY Ad 109139 yored Ag

18



Experimental Results — Dataset
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e Mol2vec to get features

Cell imaging profiles obtained from the Cell
Painting assay (Bray et al., 2017)

e 30,204 small molecules screened in one cell line
l.,e. U20S (a human bone cancer cell line)
e Hand crafted features through CellProfiler

L1000 gene expression profiles (Subramanian
et al., 2017)

* Nine core cell lines tested for 17,753 drugs
* |ntotal — 82,914 drug-cell line pairs

e.g. A549 (Lung Cancer), MCF-7 (Breast Cancer)



Experimental Results — Drug Representations

e The drug discovery task = identify molecules (e.g., from a drug repurposing library) that are

most likely to induce a given desired phenotypic change (i.e., gene expression change from
diseased towards normal).

e Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval
ibrary (whole / batch) that are most likely to induce a given phenotypic change.

All molecules in  held-out set molecules
held-out set that are in the same

experimental batch as
the retrieving target
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Experimental Results — Drug Representations

e Molecule-Phenotype Retrieval for Drug Repurposing. Identifying molecules from a retrieval
ibrary (whole / batch) that are most likely to induce a given phenotypic change.

Dataset Gene Expression (GE) Cell Painting (CP)

Retrieval Library whole batch whole batch
TopNAcc(%) N=1 N=5 N=10 N=1 N=5 N=10 N=1 N=5 N=10 N=1 N=5 N=10
Random 0.03 0.13 027 158 790 1581 0.02 0.08 0.17 159 797 1594
CLIP 596 18.59 27.17 12.23 30.29 4263 7.23 2095 28.89 13.20 37.78 52.72
CCL 193 585 837 12.76 32.39 4577 131 493 7.38 13.20 37.99 53.13
InfoCORE 6.39 18.99 27.18 14.03 33.63 46.78 6.93 20.65 28.22 13.26 38.50 53.13

CCL — Few CLIP — Biased

negatives in the
same batch
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Experimental Results — Drug Representations

* Molecular property prediction (bioactivity) downstream task

Blood-Brain o Side Human

: Clinical .
Barrier Toxich Effect Immunodetficiency
Penetration oXicity Resource Virus

T ($ssiﬁcation (ROC-AUC %) 1 T T

Reg (R* %) 1

Datasets BBBP BACE ClinTox Tox21  ToxCast SIDER HIV Avg. PRISM Post-
#Molecules 2039 1513 1478 7831 8575 1427 41127 - 3172 Lerturbation
Cell Viability
# Tasks 1 1 2 12 617 27 1 -
Mol2vec 70.7(0.4) 82.9(0.7) 84.9(0.3) 76.0(0.1) 74.4(0.5) 64.9(0.3) 77.7(0.1) 759 8.5(0.7)
CLIP 73.5(0.4) 86.1(0.4) 89.6(2.1) 77.3(0.0) 75.7(0.6) 63.7(0.6) 77.7(0.6) 77.6 13.9(0.4)
GE | CCL 73.0(0.8) 85.9(0.6) 90.5(1.0) 77.0(0.2) 75.8(0.2) 63.4(0.5) 77.5(0.9) 77.6  16.0(0.5)
InfoCORE  73.5(0.3) 86.6(0.3) 91.9(1.9) 77.4(04) 75.7(0.2) 64.8(0.6) 78.5(0.2) 78.3 14.8(0.1)
CLIP 73.4(0.8) 85.2(0.4) 87.3(0.1) 76.4(0.1) 76.7(0.1) 64.8(0.6) 78.2(0.4) 77.4 16.2(0.2)
CP | CCL 73.7(0.5) 84.9(0.9) 87.7(1.8) 75.9(0.3) 75.7(0.4) 65.2(0.4) 79.3(0.3) 77.5 14.7(0.3)
InfoCORE  74.0(0.8) 85.0(0.2) 89.3(0.5) 76.6(0.1) 76.9(0.1) 65.2(0.1) 78.7(0.1) 78.0  16.2(0.3)
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Experimental Results — Representation Fairness

UCI Adult Law School Compas
Method Acc? EOJ EOPP| Acct EO| EOPP]  Acc? EO] EOPP|
CLIP 85.1(0.1) 20.7(1.8) 15.2(1.7) 83.1(0.2) 30.9(1.4) 7.9(0.8) 60.8(2.3) 18.4(2.4) 11.7(1.9)
CCL 85.1(0.2) 19.0(3.3) 13.3(2.8) 83.0(0.3) 27.8(1.5) 6.7(0.9) 59.512.3) 17.1(3.4) 10.1(3.0)

InfoCORE 85.2(0.1) 14.91.1) 9.7(0.8) 82.7(0.4) 25.4(3.6) 6.0(14) 60.1(2.1) 15.3(2.5) 9.3(0.8)

Equalized Odds (EO): sum Equality of
of the absolute difference  opportunity (EOPP):

of TPR and FPR of the absolute difference of
model predictions TPR of the model
between two groups predictions between

two groups
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