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Error Correction Code: Setting

 Goal: allow reliable data transmission over a noisy communication channel.

• A desired binary message 𝒎 is encoded to a redundant codeword 𝒙 = 𝐆𝒎 over GF(2) and modulated 
(via BPSK) to 𝒙𝒔.

• The noisy channel adds (AWGN) noise 𝒛 such that 𝒚 = 𝒙𝒔 + 𝒛.

• The (parameterized) decoder 𝒇𝜽(𝒚) aims at retrieving the original codeword 𝒙 from 𝒚.

• The parity check matrix 𝑯 ∈ 𝟎, 𝟏 (𝒏−𝒌)×𝒏 is defined such that 𝐆𝐓𝑯 ≡ 𝟎⇒ 𝑯𝒙 = 𝟎.

• The parity check equations allows parity check errors discovery: 𝑯 𝒙 + 𝒛𝒃 = 𝑯𝒙 + 𝑯𝒛𝒃 = 𝑯𝒛𝒃
• The Tanner graph is the graph representation of 𝑯 (edge for 1 in each column)



Neural Decoders

 Two main families of neural decoders:

• Model-based decoders implement augmented parameterized versions of the classical Belief Propagation decoder 
built upon the Tanner graph (graph representation of 𝑯).

• Pros: 
• Invariant to the codeword (robust to codewords overfitting)

• Built on iterative legacy methods

• Cons:
• Suffers from heavy and restrictive inductive bias.

• Improvement vanishes as the code length and the number of iterations increase

• Model-free decoders employ general types of neural network architectures (e.g., MLP, RNN)

• Pros:
• Total freedom in model design

• Cons:
1. Overfitting (exponential number of codewords for training) [1]

2. Difficulties in learning the code [2]

3. Lack Iterative formulation [3]

• Cons in Common :
4. Lack Code invariance (one decoder must be designed and trained for each code/rate/length)
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One needs to develop, train, and deploy one neural decoder for each family of code, length, and rate.

How can we develop a single universal neural decoder 
which is code/length/rate invariant?
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Code-Invariant Initial Embedding

• In ECCT, a unique model is crafted for every code and length where the initial embedding is designed such that each input bit 
possesses its distinct embedding vector, providing, as a byproduct, a learned positional encoding.

• In our length-invariant model (FECCT), we propose a new code-invariant embedding, where a single embedding is given for all 
magnitude elements, and two embeddings are given for every element of the binary syndrome.

With                                         .

• This new length/rate-invariant initial encoding requires 
three embedding vectors compared to the 𝟐𝒏 − 𝒌 vectors of the ECCT.

• In contrast to ECCT which captures the bit position with learned embedding, 
our method lacks positional information.



Tanner Graph Distance Masking 
as Code and Positional encoding

• FECCT’s masking serves two purposes. 
• Similar to ECCT, it integrates the code structure into the transformer. 

• Adds the relative position information to the processed elements.

• The Tanner graph captures the relations between every two bits in the code (relative positional encoding). 

• We consider the distance matrix 𝓰(𝑯) ∈ ℕ 𝟐𝒏−𝒌 × 𝟐𝒏−𝒌 , induced by the code (Tanner graph).
• Each element (𝑖, 𝑗) in this matrix is defined as the length of the shortest path in the Tanner graph between node 𝑖 and node 𝑗. 

• We learn a parameterized mapping 𝝍:ℕ → ℝ of the distance matrix, incorporated into the self-attention

• This attention mechanism generalizes the ECCT which captured only up to two rings information.



Parity-Check Aware Prediction

• ECCT makes use of two fully connected layers (least length invariant modules) for the final prediction ((2𝑛 − 𝑘) → 𝑛)

• ECCT’s learned output layer is (surprisingly) greatly induced by the code/parity check matrix.

• Motivated by this phenomenon, we explicitly enforce a similar dependency structure.

• By splitting the syndrome and the channel output elements we integrate the remaining syndrome information by aggregation
according to the parity check matrix connectivity

• This way, the final prediction is code-aware but also code/length invariant.

• Finally, the FECCT being invariant its number of parameters is independent of the code.



Experiments

• Trained on multiple codes, our single decoder (with 
smaller capacity) can match and even outperform other 
methods designed and trained separately on each code, 
in multiple scenarios

• Pretrained codes

• Zero-shot codes

• Fine-tuned codes

Zero-Shot Codes

Pretrained Codes

Fine-Tuned Codes



Analysis

• Learned Distance Mapping:
FECCT seems to assign the most
impactful mapping for the elements 
distanced by one and two nodes,
remarkably matching the ECCT’s 
two-ring heuristic.

• Architectural Ablation
The ablation demonstrate the beneficial 
impact of each of the contributions on 
the obtained accuracy compared to 
SOTA

• Generalization:
To show the importance of dataset 
diversity, we show that training FECCT on 
one single code is slightly better on the 
trained code but totally lacks generalization 
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