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Imperfect information games

• Imperfect-information games (IIGs) model strategic interactions
between players with hidden information.
• The hidden information is omnipresent in real-world decision-making

problems, such as medical treatment, negotiation, and security,
making the research on IIGs theoretically and practically crucial.
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Nash Equilibrium

• We focus on solving in two-player zero-sum IIGs.
• Nash equilibrium [3]: No player can benefit from unilaterally devi-

ating from the equilibrium.
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Counterfactual Regret Minimization (CFR)

• The family of CFR [8] is the most successful approaches to com-
puting Nash equilibrium in IIGs.
• CFR iteratively minimizes both players’ regrets so that the time-

averaged strategy approaches the Nash equilibrium.
• Repeat T iterations for each information set I:

• Compute the instantaneous regret rt(I, a) using strategy σt(I).
• Update the cumulative regret Rt(I, a) = Rt−1(I, a) + rt(I, a).
• Compute the next strategy σt+1(I, a) ∼ max (0, Rt(I, a)).
• Cumulate the strategy Ct(I, a) = Ct−1(I, a) + πσt

(I)σt(I, a).
• Compute the average strategy σ̄t(I, a) ∼ Ct(I, a).
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CFR Variants

• CFR assigns equal weights to every iteration. One key to improving
performance is weighting each iteration non-uniformly.
• CFR+ [6]:

• Cumulate the strategy Ct(I, a) = Ct−1(I, a) + t∗πσt

(I)σt(I, a).
• LinearCFR [1]

• Update the cumulative regret Rt(I, a) = Rt−1(I, a) + t∗rt(I, a).
• Cumulate the strategy Ct(I, a) = Ct−1(I, a) + t∗πσt

(I)σt(I, a).
• DCFR [2]

• Update the cumulative regret

Rt(I, a) =

{
Rt−1(I, a) (t−1)α

(t−1)α+1 + rt(I, a), if Rt−1(I, a) > 0

Rt−1(I, a) (t−1)β

(t−1)β+1
+ rt(I, a), otherwise,

• Cumulate the strategy Ct(I, a) = Ct−1(I, a)
(
t−1
t

)γ
+πσt

(I)σt(I, a).
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Motivation

• The discounting CFR variants have obtained remarkable perfor-
mance in solving IIGs, but exploiting a fixed and manually-specified
discounting scheme.
• Pre-determined schemes are not flexible enough, thus inevitably

limiting the convergence performance.
• We argue that an ideal scheme should fulfill two criteria:

• Be automatically learned rather than manually designed.
• Adjust the weights dynamically instead of using fixed weights

• We propose a novel Dynamic Discounted CFR (DDCFR) frame-
work that weights each iteration using a dynamic, automatically-
learned discounting scheme.
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High-level Idea

• DDCFR encapsulates CFR’s iteration process into an environment
and regard the discounting scheme as an agent interacting with it.
• The interaction process constitutes an MDP (G,S,A, PG, R̂G)
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MDP for CFR’s Iteration

• The game G: an IIG to be solved.
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MDP for CFR’s Iteration

• The state space S: help the agent make good decisions, and make
the learned scheme applicable to different games. It consists of
the normalized iteration t̂ and the normalized exploitability ÊG

t−1.
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ÊG
t−1

τt

αt,βt, γt

ât

R̂G

st

Agent
πθ

ICLR2024 Dynamic Discounted Counterfactual Regret Minimization 8 / 16



Background The DDCFR Framework Optimization through ES Experiments Conclusion

MDP for CFR’s Iteration

• The action space A: ât = [αt, βt, γt, τt]. αt, βt, γt are used to
determine the discounting weights. τt is the duration for how long
to use these discounting weights.
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MDP for CFR’s Iteration

• The state transition PG: DDCFR uses the discounting weights
calculated by αt, βt, γt, τt for τt iterations, and the state transitions
from st to st+τt .
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MDP for CFR’s Iteration

• the reward function R̂G: the agent receives a reward R̂G = logEG
1 −

logEG
T at the end of the iteration process. EG

t is the exploitability
of the average strategies at the iteration t.
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Optimization Objective

• In each game G, the objective is to maximize the final reward,
represented as fG(θ) = R̂G.
• DDCFR’s overall objective is to maximize the average sum of the

rewards across the training games G, f(θ) = 1
|G|

∑
G∈G fG(θ).

• By optimizing f(θ), our ultimate goal is to learn a generalizable
discounting policy that applies to new games.
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Theoretical Analysis

• DDCFR is guaranteed to converge to a Nash equilibrium as long
as αt, βt, γt are within a certain range.

Theorem
Assume that conduct DDCFR T iterations in a two-player zero-sum
game. If DDCFR selects hyperparameters as follows: αt ∈ [0, 5]
for t < T

2 and αt ∈ [1, 5] for t ≥ T
2 , βt ∈ [−5, 0], γt ∈ [0, 5], the

weighted average strategy profile is a 6|I|∆
(
8
3

√
|A|+ 2√

T

)
/
√
T -

Nash equilibrium.

• The theorem signifies that numerous dynamic discounting schemes
converge in theory.
• We then describe how to efficiently optimize the policy to find a

well-performing scheme in practice.
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Evolution Strategies (ES)

• ES [5;7] has demonstrated its efficacy as a scalable alternative to
RL in tackling these challenges.
• As a black box optimization technique, ES is indifferent to the dis-

tribution of rewards and tolerant of arbitrarily long time horizons.
• Besides, ES is easy to implement and is highly scalable and efficient

to use on distributed hardware.
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Method and Acceleration Techniques

• Evolution Strategies (ES) [5]

• Generate a population of perturbed network parameters {θm + δϵi}Ni=1,
where δ denotes the noise standard deviation and ϵi ∼ N (0, I).

• Evaluate the performance f(θm+δϵi) of each perturbed parameter
θm + δϵi.

• Approximate the gradient estimation with samples.

1

δ
∗ 1

N

N∑
i=1

f(θm + δϵi)ϵi

• Update the parameter using stochastic gradient ascent.

θm+1 ← θm +
lr

δ ·N
N∑
i=1

f(θm + δϵi)ϵi

• Acceleration Techniques
• Antithetic estimator [4].
• Fitness shaping [7].
• Parallelism.
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Comparison To Discounting CFR Variants

• DDCFR achieves competitive performance on training games and
unseen testing games against the other CFR variants, thanks to
the learned dynamic discounting scheme’s ability to adjust the dis-
counting weights on the fly using information available at runtime.
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Learned Dynamic Discounting Scheme

• We visualize the actions of the learned discounting scheme during
the iteration process.
• The learned discounting scheme behaves differently in various games

yet exhibits a similar trend. Compared with DCFR’s fixed discount-
ing scheme (we can view DCFR as a special case of DDCFR, where
α1 = 1.5, β1=0, γ1=2, τ1=∞), it is more aggressive in the earlier
iterations and becomes more moderate as the iteration progresses.
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Conclusion

• We present DDCFR, the first equilibrium-finding framework that
discounts prior iterations using an automatically-learned dynamic
scheme.
• We first formulate CFR’s iteration process as a carefully designed

MDP and transform the discounting scheme learning problem into
a policy optimization problem.
• We then exploit a scalable ES-based algorithm to optimize the

discounting policy efficiently.
• The learned discounting policy exhibits strong generalization abil-

ity, achieving competitive performance on both training games and
new testing games.
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Thanks!
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