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Entroduction NEGTA

Deep Neural Networks (DNNSs) are ubiquitous in modern world, yet they are not without
their limitations.

e Vulnerability fo Adversarial Attacks - DNNs are susceptible to adversarial attacks,
thus threatening the integrity and reliability of AI systems.

e Adversarial fraining is a promising strategy to enhance DNN robustness.

Challenges

- Generalization and Robustness Trade-off: Adversarial Training improves
robustness but often compromises performance on clean images - Trade-off

- Robust Overfitting: Longer Adversarial Training can lead to reduced test
performance.



Problem Statement NE U T 3{ \[

Understanding the Learning Dynamics: Exploring the learning patterns and capabilities
of DNNs on both natural and adversarial data are crucial for reliable AI systems.

Perform an Empirical Analysis :
Investigate learning behavior during transition from Standard training to Adversarial

training
- Layer-wise Analysis of weight updation and retention

- Representation similarity between features

- Overfitting phenomenon



Empirical Analysis
Adversarial Robustness

NEUEKA

Experimental Setup - Reinitialize different layers in each experiment while keeping the rest of

the network fixed.

e The notation U-b represents the update of block ”b” while keeping the rest of the network

frozen.
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Empirical Analysis NE UM
Representation Alignment

Robust and Non-robust features - Visualizing features learned on natural and adversarial
data aids in understanding representation alignment.
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Empirical Analysis
Robust Overfitting

NEUEKA

Over prolonged training in adversarial setting - test accuracy declines - Robust
Overfitting

The base (AT) model prominently exhibits overfitting.
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Methodology (1) TIE UW\I

Empirical findings -
e Training the entire network and updating all weights may not be optimal for
learning diverse data distributions.
e Selectively updating certain weights while conserving others can effectively
leverage the network’s learning capabilities.
e Retention and learning capabilities of the network - a better balance between
natural and adversarial robustness

Propose a new Method : CURE
(1) Conservation (of knowledge from natural data),

(2) Updation (of knowledge from adversarial data), and
(3) REvision (of consolidated knowledge)



Methodology (2) BIE URA\[

Adversarial Training 0" = argmax |Dgr(p(Tnat: 0)||p(Tnat + 6; 9))],
* dEA

Eadv - ECE(I'nat: 9) 4 DKL (p(l?navt: 9) l |[)(‘r(1dlh 9))

Robust Gradient Prominence (RGP) -
determines which weights to update RGP(w) = o
and which ones to freeze in
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Revision stage - consolidate
knowledge for Consistency Lcr = Dir(p(Znat; Orev)||P(Tnat: 0)) + Dk L(P(Tadv; Orev)|[P(Zadv: 0))-

regularization
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Results (1) NE UM

WideResNet-34-10 | ResNet-18

Method I

| Nat PGD20 AA C&W | NRR | Nat PGD20 AA C&W | NRR
AT ICLR'18 85.17 55.08 4404 5291 | 65.27 | 82.78 51.30 44.63 4972 | 62.12
TRADES 1cML'19 84.73 56.82 5295 5429 | 66.17 | 8241 52.76 48.37 5043 | 62.57
MART ICLR20 83.62 56.74 51.23 53.16 | 6499 | 80.70 54.02 4749 4935 | 61.24
FAT ICML'20 86.60 49 .86 4748 4935 | 62.87 | 87.72 46.69 43.14 4966 | 6341
ST-AT ICLR23 84.92 57.73 53.54 - - 83.10 54.62 50.50 51.43 | 63.53
ACT BMvVC20 | 87.10 54.77 - - - 84.33 55.83 - - -
ARD AAAI'20 85.18 53.79 - - - 82.84 5141 - - -
IAD ICLR22 83.06 56.17 5268 5399 | 6544 | 80.63 53.84 50.17 51.60 | 6292
LAS-AT CVPR'22 85.24 57.07 5358 5545 | 67.19 | 82.39 53.70 4994 5196 | 63.72
CURE - | 87.05 58.28 52.10 55.25 | 67.60 | 86.76 54.92 4969 5248 65.04

NRR — 2 x Natural Accuracy x RobustAccuracy

Natural Accuracy + Robust Accuracy
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Results (3) NE URA\[
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Results (4)

Adversarial Perturbations

e The visualizations provide a clear
comparison of the minimum
perturbations required to fool each
of the robust models

e Models trained with CURE exhibit a
higher level of sensitivity to
perturbations.
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Results (5) NE UM

Gradients Analysis
e Percentage of gradients updated in each layer conv layer during initial and final
phases of training
e As training progresses, the RGP metric identifies the weights that need to be fixed to
prevent overwriting.
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