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Introduction



DNN-based Image Restoration Methods
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p Supervised learning based IR methods

p Unsupervised learning based IR methods

Collected Paired data Effective Neural Network

Image Prior Degradation Model

DreamClean can restore images without explicit or implicit assumptions about the specific degradation model.
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Method
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p DDIM Inversion 
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p Variance Preservation Sampling

p Denoising Sampling
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Experiment



Quantitative Results
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Visual Results
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Results of JPEG artifacts correction. DreamClean is blind to the degradation model. DreamClean can still 
recover a 1024x1024 high-quality image given the extremely destroyed image based on the advanced 
Stable Diffusion XL.
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DreamClean can resort to the inherent prior of diffusion models to tackle with linear 
degradation, noisy linear degradation, non-linear degradation and complex bad 
weather degradation.  𝒚:	the degraded image, 𝒙: our result. 
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Visualization of latents of DDIM and VPS. VPS translates original degraded artifacts to 
Gaussian-like noise and DDIM step is responsible for progressively reducing the amount of 
Gaussian noise contained in latents.

:DDIM Step :Variance Preservation Sampling

(a) Latents of an degraded image

(b) Visualization of latents of DreamClean
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Conclusion



Conclusion
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p Unsupervised IR method

p without assuming degraded model explicitly or 
implicitly

p harness the advanced generative models such as 
Stable diffusion  
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