

DreamClean: Restoring Clean Image Using Deep Diffusion Prior

Jie Xiao¹, Ruili Feng², Han Zhang³, Zhiheng Liu¹, Zhantao Yang³, Yurui Zhu¹, Xueyang Fu¹, Kai Zhu², Yu Liu², Zheng-Jun Zha¹ ¹MPC Lab, University of Science and Technology of China ²Alibaba Group ³Shanghai Jiao Tong University

ICLR 2024

□ Introduction

Method

D Experiment

Conclusion

Introduction

DNN-based Image Restoration Methods

Supervised learning based IR methods

Unsupervised learning based IR methods

DreamClean can restore images without explicit or implicit assumptions about the specific degradation model.

Motivation

Overview

different sampling

Method

DDIM Inversion

Inversion

$$y_{t+1} = \sqrt{\alpha_{t+1}} \left(\frac{y_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^t(y_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t+1}} \epsilon_{\theta}^t(y_t, t)$$

□ Variance Preservation Sampling

Sampling

$$y_t^m = y_t^{m-1} + \eta_l \nabla \log p_t(y_t^{m-1}) + \eta_g \epsilon_g^m, \ m = 1, 2 \dots, M, y_t^0 = y_t,$$

where
$$\eta_l = \gamma(1 - \alpha_t)$$
, $\eta_g = \sqrt{\gamma(2 - \gamma)}\sqrt{1 - \alpha_t}$, $\nabla \log p_t(y_t^{m-1}) = -\frac{\epsilon_{\theta}(y_t^{m-1}, t)}{\sqrt{1 - \alpha_t}}$

Denoising Sampling

$$y_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{y_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^t(y_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_{\theta}^t(y_t, t)$$

Experiment

Quantitative Results

sian noise $\sigma = 0.05$ on CelebA.

Table 1: Quantitative results of 4×SR with Gaus- Table 2: Quantitative results of 4×SR with Gaussian noise $\sigma = 0.05$ on ImageNet.

Method	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	NFEs \downarrow	Method	$PSNR \uparrow$	SSIM \uparrow	LPIPS \downarrow	NFEs \downarrow
	이 정치 중심			이 지방 수 전				약 이 정하는	
Baseline	23.64	0.51	0.64	0	Baseline	21.85	0.47	0.58	0
DGP	18.40	0.40	0.70	1500	DGP	9.50	0.12	0.93	1500
SNIPS	26.38	0.74	0.20	1000	RED	22.90	0.49	NA	100
DPS	24.42	0.70	0.17	1000	DPS	24.42	0.70	0.36	1000
DDRM	29.21	0.83	0.09	100	DDRM	25.67	0.73	0.30	100
DDNM	29.17	0.82	0.09	100	DDNM	25.56	0.72	0.30	100
GDP	24.38	0.71	0.15	1000	GDP	24.33	0.67	0.39	1000
Ours	27.23	0.77	0.12	90	Ours	24.31	0.67	0.40	90
Ours*	30.19	0.84	0.08	60	Ours*	25.84	0.74	0.23	60

Table 3: Quantitative results of JPEG compres- Table 4: Quantitative results of JPEG compression artifacts correction on CelebA.

sion artifacts correction on LSUN bedroom.

Method	$PSNR \uparrow$	SSIM \uparrow	LPIPS \downarrow	NFEs \downarrow	Method	$PSNR \uparrow$	SSIM \uparrow	LPIPS \downarrow	NFEs \downarrow
					_				
Baseline	24.79	0.69	0.41	0	Baseline	23.39	0.68	0.34	0
QGAC	24.28	0.68	0.32	1	QGAC	23.41	0.69	0.34	1
FBCNN	26.37	0.77	0.24	1	FBCNN	24.10	0.73	0.31	1
DDNM	24.40	0.66	0.31	100	DDNM	22.73	0.66	0.33	100
DDRM-JPEG	26.41	0.77	0.20	100	DDRM-JPEG	24.06	0.73	0.32	100
Ours	27.58	0.82	0.20	90	Ours	24.35	0.74	0.31	90

Visual Results

Results of JPEG artifacts correction. DreamClean is blind to the degradation model. DreamClean can still recover a 1024x1024 high-quality image given the extremely destroyed image based on the advanced Stable Diffusion XL.

Visual Results

SR with Gaussian noise

SR with Poisson noise

Colorization

DreamClean can resort to the inherent prior of diffusion models to tackle with linear degradation, noisy linear degradation, non-linear degradation and complex bad weather degradation. y: the degraded image, x: our result.

Analysis

(b) Visualization of latents of DreamClean

Visualization of latents of DDIM and VPS. VPS translates original degraded artifacts to Gaussian-like noise and DDIM step is responsible for progressively reducing the amount of Gaussian noise contained in latents.

Conclusion

Conclusion

Unsupervised IR method

without assuming degraded model explicitly or implicitly

harness the advanced generative models such as Stable diffusion

Thanks !