Compressed Context Memory For Online Language Model Interaction

Jang-Hyun Kim¹, Junyoung Yeom¹, Sangdoo Yun^{2†}, Hyun Oh Song^{1†}

 $^1 {\rm Seoul}$ National University $\ ^2 {\rm NAVER}$ AI Lab $\ ^\dagger {\rm equal}$ supervision

ICLR 2024

Why and what

• Transformers require linearly **increasing memory and FLOPS** for attention keys/values. (IGB for 1k tokens even for 7B LLaMA!)

Figure: Left: Conventional online inference approach. Right: The proposed system with compressed context memory. The colored boxes represent attention keys/values (or input tokens).

Advantages of the proposed method

- Memory efficient inference by recurrent key/value (KV) compression
- Increases throughput of LM
- Only requires lightweight LoRA for compression
- Fully parallelized training strategy

	A100 PCIe 80GB					
	Full context	CCM-concat	CCM-merge			
Throughput (sample/sec)	5.3	24.4	69.9			
Maximum batch size	60	300	950			
Context KV length	800	128	8			
Performance (Accuracy %)	70.8	70.0	69.6			

Figure: Inference throughput on the MetaICL dataset with LLaMA-7B, FP16.

Method: Inference (compression)

Given a context $\boldsymbol{c}(t)\text{, we obtain the compressed key/value }\boldsymbol{h}(t)$ as

$$h(t) = g_{\mathsf{comp}}(\mathsf{Mem}(t{-}1), c(t)),$$

where g_{comp} is a language model's forward pass with conditional adapter.

Figure: The compression process at time step t. Each colored box symbolizes attention hidden states.

Method: Inference (memory update)

The compressed context memory ${\rm Mem}(t)$ is then updated via an update function $g_{\rm update}$ as

$$\mathsf{Mem}(t) = g_{\mathsf{update}}(\mathsf{Mem}(t-1), h(t)).$$

- **CCM-concat**: For a scalable memory, we employ the *concatenation* function as g_{update} .
- CCM-merge: For a fixed-size memory like an RNN, we propose a merging function:

$$\mathsf{Mem}(t) = (1 - a_t)\mathsf{Mem}(t-1) + a_t h(t),$$

where $a_1 = 1$ and $a_t \in [0, 1]$ for $t \ge 2$.

Method: Parallelized training

Figure: In (a), each colored box symbolizes attention keys/values of memory, compression tokens, and normal text tokens. In (b), gray indicates that attention is blocked. $\langle C \rangle$ stands for $\langle COMP \rangle$. At each layer, after the parallel updates of compressed context memory, the attention operation occurs with the mask in (b).

Method: Conditional LoRA

For a parameterized language model f_{θ} , naive finetuning might lead to overfitting on inputs I(t):

 $\min_{\boldsymbol{\theta}} \mathbb{E}_t[-\log f_{\boldsymbol{\theta}}(O(t) \mid \mathsf{Mem}(t; \boldsymbol{\theta}), I(t))].$

• Our proposal:

 $\min_{\Delta \theta} \mathbb{E}_t \left[-\log f_{\theta}(O(t) \mid \mathsf{Mem}(t; \theta + \Delta \theta), I(t)) \right].$

Figure: Forward operations of conditional LoRA.

Qualitative result sample

Context:

A: What's the problem, Nada? You look down in the dumps. $\langle COMP \rangle$

B: I don't know. My life is a big mess. Everything is so complicated. (COMP)

A: Come on, nothing can be that bad. $\langle COMP \rangle$

B: But promise me, you'll keep it a secret. (COMP)

A: Ok, I promise. So what's troubling you so much? (COMP)

B: I've fallen in love with my boss. $\langle COMP \rangle$

A: Really? Is he married? (COMP)

 \Rightarrow Total 103 tokens. Context compression ratios are 7/103 (CCM-concat) and 1/103 (CCM-merge).

Input: No, of course not. He is still single. Output generated w/o context: I'm sorry, I'm not sure what you mean. Output generated by CCM-concat: So what's the problem? Output generated by CCM-merge: What's his problem? Ground truth output: Then what's your problem?

Figure: An example result using our method with LLaMA-7B on a DailyDialog test sample.

Experiment: Compression performance

 Check out the conversation and personalization benchmark results in our paper.

Figure: Comparison to full context approach on MetalCL test tasks with LLaMA-7B. *Peak KV memory* refers to the peak memory space occupied by attention keys/values at each time step.

Experiment: Comparison to compression baselines

• Compression factor = 8.

Figure: Test performance in online inference scenario with LLaMA-7B. All compression methods have the **identical compression factor around 8**, except for CCM-merge, which has a higher compression factor.

Experiment: Streaming setting

• Streaming with sliding window.

Figure: Streaming evaluation on PG19 validation set using sliding window with LLaMA-7B.

Experiment: Training data source analysis

		Evaluation dataset			
Training dataset	# training data	Pretrain	SODA	DailyDialog	MetaICL
Pretrain (= RedPajama + LmSys-Chat)	500k	-0.55	-0.22	-0.74	-4.9%
Pretrain + MetaICL	500k	-0.59	-0.26	-0.82	-1.2%
Pretrain + MetaICL + SODA	500k	-0.61	-0.10	-0.54	-1.3%
Pretrain + MetaICL + SODA	750k	-0.57	-0.09	-0.53	-1.1%

Figure: Compression performance gap across different data sources used to train compression adapter.

Summary

- Our approach dynamically creates **compressed KV memory** during LLM interactions.
- Our approach only requires training a **conditional LoRA** for compression.
- We use a **fully parallelized training** strategy for recurrent compression procedures.
- We conduct evaluations on diverse applications: conversation, multi-task ICL, and personalization, achieving the performance level of a full context model with 5× smaller context memory space.