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Why and what

® Transformers require linearly increasing memory and FLOPS for
attention keys/values. (1GB for 1k tokens even for 7B LLaMA!)
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Figure: Left: Conventional online inference approach. Right: The proposed
system with compressed context memory. The colored boxes represent
attention keys/values (or input tokens).



Advantages of the proposed method

Memory efficient inference by recurrent key/value (KV) compression

® Increases throughput of LM

Only requires lightweight LoRA for compression

Fully parallelized training strategy

A100 PCIe 80GB
Full context CCM-concat CCM-merge
Throughput (sample/sec) 53 244 69.9
Maximum batch size 60 300 950
Context KV length 800 128 8
Performance (Accuracy %) 70.8 70.0 69.6

Figure: Inference throughput on the MetalCL dataset with LLaMA-7B, FP16.



Method: Inference (compression)

Given a context ¢(t), we obtain the compressed key/value h(t) as
h(t) = geomp(Mem(t—1),c(t)),
where geomp is a language model's forward pass with conditional adapter
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Figure: The compression process at time step t. Each colored box symbolizes
attention hidden states.



Method: Inference (memory update)

The compressed context memory Mem(t) is then updated via an update
function gupdate as

Mem(t) = gupdate(Mem(t_l)a h(t))

® CCM-concat: For a scalable memory, we employ the concatenation
function as gpdate-

® CCM-merge: For a fixed-size memory like an RNN, we propose a
merging function:

Mem(t) = (1 — a;)Mem(t—1) 4+ a;h(t),

where a1 =1 and a; € [0,1] for ¢t > 2.



Method: Parallelized training
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Figure: In (a), each colored box symbolizes attention keys/values of memory,
compression tokens, and normal text tokens. In (b), gray indicates that

attention is blocked. (C) stands for (COMP). At each layer, after the parallel
updates of compressed context memory, the attention operation occurs with

the mask in (b).




Method: Conditional LoRA

For a parameterized language model fy, naive finetuning might lead to
overfitting on inputs I(¢):

min B[ log fy(O(t) | Mem(t:0), I(t))]-

® Qur proposal:

n&ien E; [—log fo(O(t) | Mem(t; 0 + AB), I(t))].
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Figure: Forward operations of conditional LoRA.



Qualitative result sample

Context:

A: What’s the problem, Nada? You look down in the dumps. (COMP)

B: I don’t know. My life is a big mess. Everything is so complicated. (COMP)

A: Come on, nothing can be that bad. (COMP)

B: But promise me, you’ll keep it a secret. (COMP)

A: Ok, I promise. So what’s troubling you so much? (COMP)

B: I've fallen in love with my boss. (COMP)

A: Really? Is he married? (COMP)

= Total 103 tokens. Context compression ratios are 7/103 (CCM-concat) and 1/103 (CCM-merge).

Input: No, of course not. He is still single.

Output generated w/o context: I'm sorry, I’'m not sure what you mean.
Output generated by CCM-concat: So what’s the problem?

Output generated by CCM-merge: What’s his problem?

Ground truth output: Then what’s your problem?

Figure: An example result using our method with LLaMA-7B on a DailyDialog
test sample.



Experiment: Compression performance

® Check out the conversation and personalization benchmark results in
our paper.
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Figure: Comparison to full context approach on MetalCL test tasks with
LLaMA-7B. Peak KV memory refers to the peak memory space occupied by
attention keys/values at each time step.



Experiment: Comparison to compression baselines

® Compression factor = 8.
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Figure: Test performance in online inference scenario with LLaMA-7B. All
compression methods have the identical compression factor around 8, except
for CCM-merge, which has a higher compression factor.



Experiment: Streaming setting

® Streaming with sliding window.
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Figure: Streaming evaluation on PG19 validation set using sliding window with
LLaMA-7B.
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Experiment: Training data source analysis

Evaluation dataset
Training dataset # training data | Pretrain SODA  DailyDialog MetalCL
Pretrain (= RedPajama + LmSys-Chat) 500k -0.55 -0.22 -0.74 -4.9%
Pretrain + MetaICL 500k -0.59 -0.26 -0.82 -1.2%
Pretrain + MetaICL + SODA 500k -0.61 -0.10 -0.54 -1.3%
Pretrain + MetaICL + SODA 750k | -0.57 -0.09 -0.53 -1.1%

Figure: Compression performance gap across different data sources used to
train compression adapter.



Summary

Our approach dynamically creates compressed KV memory during
LLM interactions.

Our approach only requires training a conditional LoRA for
compression.

We use a fully parallelized training strategy for recurrent
compression procedures.

We conduct evaluations on diverse applications: conversation,
multi-task ICL, and personalization, achieving the performance level
of a full context model with 5x smaller context memory space.
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