
Compressed Context Memory For
Online Language Model Interaction

Jang-Hyun Kim1, Junyoung Yeom1, Sangdoo Yun2†, Hyun Oh Song1†

1Seoul National University 2NAVER AI Lab †equal supervision

ICLR 2024

1



Why and what

• Transformers require linearly increasing memory and FLOPS for
attention keys/values. (1GB for 1k tokens even for 7B LLaMA!)

Figure: Left: Conventional online inference approach. Right: The proposed
system with compressed context memory. The colored boxes represent
attention keys/values (or input tokens).

2



Advantages of the proposed method

• Memory efficient inference by recurrent key/value (KV) compression

• Increases throughput of LM

• Only requires lightweight LoRA for compression

• Fully parallelized training strategy

Figure: Inference throughput on the MetaICL dataset with LLaMA-7B, FP16.

3



Method: Inference (compression)

Given a context c(t), we obtain the compressed key/value h(t) as

h(t) = gcomp(Mem(t−1), c(t)),

where gcomp is a language model’s forward pass with conditional adapter.

Figure: The compression process at time step t. Each colored box symbolizes
attention hidden states.

4



Method: Inference (memory update)

The compressed context memory Mem(t) is then updated via an update
function gupdate as

Mem(t) = gupdate(Mem(t−1), h(t)).

• CCM-concat: For a scalable memory, we employ the concatenation
function as gupdate.

• CCM-merge: For a fixed-size memory like an RNN, we propose a
merging function:

Mem(t) = (1− at)Mem(t−1) + ath(t),

where a1 = 1 and at ∈ [0, 1] for t ⩾ 2.

5



Method: Parallelized training

Figure: In (a), each colored box symbolizes attention keys/values of memory,
compression tokens, and normal text tokens. In (b), gray indicates that
attention is blocked. ⟨C⟩ stands for ⟨COMP⟩. At each layer, after the parallel
updates of compressed context memory, the attention operation occurs with
the mask in (b).

6



Method: Conditional LoRA

For a parameterized language model fθ, naive finetuning might lead to
overfitting on inputs I(t):

min
θ

Et[− log fθ(O(t) | Mem(t; θ), I(t))].

• Our proposal:

min
∆θ

Et [− log fθ(O(t) | Mem(t; θ +∆θ), I(t))] .

Figure: Forward operations of conditional LoRA.

7



Qualitative result sample

Figure: An example result using our method with LLaMA-7B on a DailyDialog
test sample.

8



Experiment: Compression performance

• Check out the conversation and personalization benchmark results in
our paper.

Figure: Comparison to full context approach on MetaICL test tasks with
LLaMA-7B. Peak KV memory refers to the peak memory space occupied by
attention keys/values at each time step.

9



Experiment: Comparison to compression baselines

• Compression factor = 8.

Figure: Test performance in online inference scenario with LLaMA-7B. All
compression methods have the identical compression factor around 8, except
for CCM-merge, which has a higher compression factor.

10



Experiment: Streaming setting

• Streaming with sliding window.

Figure: Streaming evaluation on PG19 validation set using sliding window with
LLaMA-7B.

11



Experiment: Training data source analysis

Figure: Compression performance gap across different data sources used to
train compression adapter.

12



Summary

• Our approach dynamically creates compressed KV memory during
LLM interactions.

• Our approach only requires training a conditional LoRA for
compression.

• We use a fully parallelized training strategy for recurrent
compression procedures.

• We conduct evaluations on diverse applications: conversation,
multi-task ICL, and personalization, achieving the performance level
of a full context model with 5× smaller context memory space.

13


