
ICLR 2024

NeurRev: Train Better Sparse Neural Network 
Practically via Neuron Revitalization (ICLR 2024)

Gen Li, Lu Yin, Jie Ji, Wei Niu, Minghai Qin, Bin Ren, Linke Guo, Shiwei
Liu, Xiaolong Ma



Model Sparsity and Efficiency

Train a Sparse Neural Network From Scratch (Sparse Training)

Static sparse training (SST) determines the structure of the sparse network at the initial stage 
of training by using the designed algorithm. Following that, the same sparse network 
structure is kept throughout the sparse training procedure.

Dynamic sparse training (DST) begins with a random selection of a sparse network structure 
at the starting stage of training and modifying the sparse network structure during the entire 
sparse training process in an effort to find a better sparse structure.



NeurRev

Finding: We identify the reason that sparsity produces dormant neurons in the DST 
process, and such dormant neurons are extremely persistent to the “prune-grow” 
dynamism of DST once they are generated.



Overview of NeurRev

Definition: We argue that dormant neurons are those convolution filters whose 
weights contain negative values in large magnitude, resulting in negative outputs 
after convolution and being set to zero for post-ReLU outputs.



NeurRev

Dormant Neurons Search & Awake

Evaluating whether a neuron is a dormant neuron using layer output is computationally intensive due 
to the large volume of output feature maps. As we find that the gradients of dormant neurons are often 
zero, those neurons can hardly update weights in the training process. Based on this phenomenon, 
we can search for those dormant neurons according to their weight changes over a certain period.



Result on CIFAR-10/100



Edge Training 

End-to-End Training Acceleration with System Overhead

NeurRev effectively reduces the dynamic update frequency, which enables efficient training on 
resource-constrained mobile devices. NeurRev (blue bar) achieves 1.8-2.1×better acceleration 
rate to dense training compared with other methods



Why ReLU?

ReLU is a versatile activation function.

In (a), ReLU has an overall better performance in software accuracy. When the training is 
performed on a mobile device as shown in (b), most of the other activation functions need to be 
implemented with piecewise linear approximation. Even with specifically designed hardware 
versions (e.g., HardSwish, HardSigmoid, etc.), the accuracy of hardware still cannot match the 
ReLU-based DNN.



Thank you 
for your time


