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| Model Sparsity and Efficiency

Train a Sparse Neural Network From Scratch (Sparse Training)

Static sparse training (SST) determines the structure of the sparse network at the initial stage

of training by using the designed algorithm. Following that, the same sparse network
structure is kept throughout the sparse training procedure.

Dynamic sparse training (DST) begins with a random selection of a sparse network structure

at the starting stage of training and modifying the sparse network structure during the entire
sparse training process in an effort to find a better sparse structure.
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- NeurRev
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Finding: We identify the reason that sparsity produces dormant neurons in the DST
process, and such dormant neurons are extremely persistent to the “prune-grow”

dynamism of DST once they are generated.
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B Overview of NeurRev

DST algorithm
(prune-grow)
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Definition: We argue that dormant neurons are those convolution filters whose
weights contain negative values in large magnitude, resulting in negative outputs

after convolution and being set to zero for post-RelLU outputs.
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Y NeurRev

Dormant Neurons Search & Awake

Evaluating whether a neuron is a dormant neuron using layer output is computationally intensive due
to the large volume of output feature maps. As we find that the gradients of dormant neurons are often
zero, those neurons can hardly update weights in the training process. Based on this phenomenon,

we can search for those dormant neurons according to their weight changes over a certain period.

Algorithm 1: NeurRev for DST

Algorithm 2: Search and Awake

Input: 6, 07, s, AT, T, p, Tstop
Output: A sparse model satisfying the target
parameter sparsity s.
Init: Initialize O according to s. 0% = 6.
while 7 < T540p do
if 7 mod AT, == 0 then
Al = abs(0s — 67)
05 < Prune&Grow(B@s,s — p)
Search&Awake(60s, Ab, p)

%
| 6;=6;
Continue sparse training from 7s¢op tO Tend.-

Input: 0, 65, AG, p

Output: A pruned sparse model.

Init: pruned_weights =0

sorted_index = Sorted_index(A6,
ascending_order)

for 7 in sorted_index do

if 6;[¢] < O then

L Prune(6s[i])

pruned_weights = pruned_weights + 1

if pruned_weights > p - ||0||o then
| exit ()

CLEMSON

U NIT VER S I TY




0 Result on CIFAR-10/100

Table 1: Test accuracy of pruned ResNet-32 on CIFAR-10/100.

Datasets Sparsity CIFAR-10 CIFAR-100
Distribution
Pruning ratio 90% 95% 98% 90% 95% 98%
ResNet-32 dense 94.88 94.88 94.88 74.94 74.94 74.94
' non-uniform 92.31 91.06 88.78 68.99 65.02 57.37
non-uniform 92.59 91.01 87.51 68.89 65.02 57.37
non-uniform 92.38 91.39 88.81 69.24 66.50 58.43
non-uniform 91.62 89.84 86.45 66.78 63.90 58.47
non-uniform 92.30 90.76 88.29 69.66 67.41 62.25
| non-uniform 92.97 91.61 88.46 69.63 68.20 61.24
RigL-ITOP [18]  uniform 93.19 92.08 89.36 70.46 68.39 64.16
RigL [13] uniform 93.07 91.83 89.00 70.34 68.22 64.07
MEST+EM [17]  uniform 92.56 91.15 89.22 70.44 68.43 64.59
NeurRev (ours) uniform 93.31+0.11 92.18+0.14 89.96+0.12 70.87+0.08 68.77+0.12  64.91 +0.06
RigL [15] ERK 93.55 92.39 90.22 70.62 68.47 64.14
RigL-ITOP [1§] ERK 93.70 92.78 90.40 7116 69.38 66.35
NeurRev (ours) ERK 93.840.09 92.93+0.14 90.84+10.12 71.96+0.06 69.92+0.05 66.82 +0.07
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" Edge Training

End-to-End Training Acceleration with System Overhead
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NeurRev effectively reduces the dynamic update frequency, which enables efficient training on
resource-constrained mobile devices. NeurRev (blue bar) achieves 1.8-2.1 xbetter acceleration
rate to dense training compared with other methods
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" Why ReLU?

RelLU is a versatile activation function.
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In (a), ReLU has an overall better performance in software accuracy. When the training is
performed on a mobile device as shown in (b), most of the other activation functions need to be

implemented with piecewise linear approximation. Even with specifically designed hardware
versions (e.g., HardSwish, HardSigmoid, etc.), the accuracy of hardware still cannot match the
RelLU-based DNN.
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