Robust Angular Synchronization via Directed Graph Neural Networks

Yixuan He¹ Gesine Reinert ^{1,2} David Wipf ³ Mihai Cucuringu ^{1,2}

¹Department of Statistics, University of Oxford, United Kingdom ²The Alan Turing Institute, United Kingdom ³Amazon Web Services AI Shanghai Lablet, China

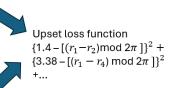
Group Synchronization

Goal: estimate a collection of group elements, given a small subset of potentially noisy measurements of their pairwise ratios $g_{i,j}^* = g_i^* g_j^{*-1}$.

• Over the group SO(2): angular synchronization aims at obtaining an accurate estimation (up to a constant additive phase) for a set of unknown angles $\theta_1, \ldots, \theta_n \in [0, 2\pi)$ from m noisy measurements of their offsets $\theta_i - \theta_j \mod 2\pi$.

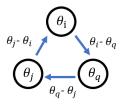
k-synchronization extends to the heterogeneous setting: given only the graph union of the same set of nodes and k disjoint sets of edges, estimate the k sets of angles simultaneously.

- ► A key limitation of existing methods for angular synchronization is their poor performance in the presence of **considerable noise** (large measurement errors).
- ▶ Neural networks (NNs)?
- ► The angular synchronization problem is not directly amenable to a standard NN architecture → a customized GNN architecture and loss functions are needed

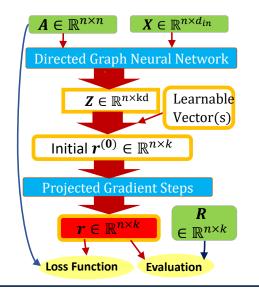


GNNSync Upset Loss

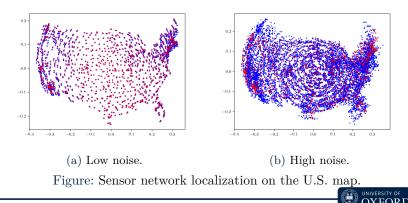
X\Y	Θ1	Θ_2	Θ_3	Θ_{4}	Θ5
Θ1	١	1.4		3.38	5.88
Θ2		١	4.28	1.11	
Θ3			١		
Θ4				١	4.3
Θ5					١


Observed (1) vs Predicted (1)

X\Y	Θ1	Θ2	Θ3	Θ4	Θ_5
Θ1	١	$r_1 - r_2$		$r_{1} - r_{4}$	
Θ2		١	$r_2 - r_3$	$r_2 - r_4$	
Θ3			١		
Θ4				١	$r_{4} - r_{5}$
Θ5					١



When there is no noise in the data, the angles of any cycle exhibit *cycle consistency*: they add up to $0 \rightarrow$ we devise a novel loss function to account for deviations from cycle consistency in noisy data.


GNNSync Overview

GNNSync Experiments

We have satisfactory performance on synthetic data sets in terms of MSE values, and our GNNSync can also work on Sensor Network Localization (SNL); the SNL problem seeks to reconstruct the 2D coordinates of a cloud of points from a sparse set of pairwise noisy Euclidean distances.

We proposed a general neural network framework for angular synchronization and a heterogeneous extension. Future directions:

- extending the framework to more general group synchronization problems
- optimizing the loss functions under constraints
- ▶ training with some supervision of ground-truth angles
- \blacktriangleright exploring the interplay with low-rank matrix completion
- exploring the graph realization problem, of recovering point clouds from a sparse noisy set of pairwise distances

Paper: https://arxiv.org/abs/2310.05842

Code: https://github.com/SherylHYX/GNN_Sync

More about me: https://sherylhyx.github.io/

