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Group Synchronization 2

Goal: estimate a collection of group elements, given a small
subset of potentially noisy measurements of their pairwise ratios
gij= 99"
» Over the group SO(2): angular synchronization aims at
obtaining an accurate estimation (up to a constant additive
phase) for a set of unknown angles 61,...,6,, € [0,27) from

m noisy measurements of their offsets 6; — ; mod 2.
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» k-synchronization extends to the heterogeneous setting:
given only the graph union of the same set of nodes and k
disjoint sets of edges, estimate the k sets of angles
simultaneously.
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Why GNNSync? 3

» A key limitation of existing methods for angular
synchronization is their poor performance in the presence
of considerable noise (large measurement errors).

» Neural networks (NNs)?

» The angular synchronization problem is not directly
amenable to a standard NN architecture — a customized
GNN architecture and loss functions are needed
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GNNSync Upset Loss 4
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GNNSync Cycle Loss 5
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When there is no noise in the data, the angles of any cycle
exhibit cycle consistency: they add up to 0 — we devise a novel
loss function to account for deviations from cycle consistency in
noisy data.
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GNNSync Overview 6
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GNNSync Experiments 7

We have satisfactory performance on synthetic data sets in
terms of MSE values, and our GNNSync can also work on
Sensor Network Localization (SNL); the SNL problem seeks to
reconstruct the 2D coordinates of a cloud of points from a
sparse set of pairwise noisy Euclidean distances.
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(a) Low noise. (b) High noise.

Figure: Sensor network localization on the U.S. map.
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Conclusion 8
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We proposed a general neural network framework for angular
synchronization and a heterogeneous extension. Future
directions:
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extending the framework to more general group
synchronization problems

optimizing the loss functions under constraints
training with some supervision of ground-truth angles
exploring the interplay with low-rank matrix completion

exploring the graph realization problem, of recovering point
clouds from a sparse noisy set of pairwise distances

Paper: https://arxiv.org/abs/2310.05842

Code: https://github.com/SherylHYX/GNN_Sync

More about me: https://sherylhyx.github.io/
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