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Graph datasets and GNNs have progressively
become more INTRICATE

Notorious COMPUTATIONAL OVERHEAD
during training / inference




SOLUTION: Finding Graph Lottery Tickets (GLT) has become
one of the pivotal focus

Graph Sparsification Parameter Sparsification



HOWEVER, previous studies have largely overlooked
the paramount importance of structural information
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e Magnitude-based pruning == NOT fully exploit inherent pathways in the graph

* I|dentified lottery tickets in an iterative manner (progressive pruning)

1) Chen et al., A Unified Lottery Ticket Hypothesis for Graph Neural Networks, ICML 2021 4



Motivation: Low-degree Edge Matters Spectrally @

Eliminating low-degree edges makes the graph spectrally unstable
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* Higher energy indicates low graph stability



Motivation: Low-degree Edge Matters Empirically @

Eliminating low-degree edges significantly degrades node classification performance
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We introduce TEDDY,
a One-shot edge sparsification framework
incorporating Edge Degree information

with projected gradient descent on £ Ball

significantly surpasses conventional
iterative approaches in
node classification task, within a

Published as a conference paper at ICLR 2024
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ABSTRACT

Since the pioneering work on the lottery ticket hypothesis for graph neural networks
(GNNs) was proposed in Chen et al. (2021), the study on finding graph lottery
tickets (GLT) has become one of the pivotal focus in the GNN community, inspiring
researchers to discover sparser GLT while achieving comparable performance to
original dense networks. In parallel, the graph structure has gained substantial
attention as a crucial factor in GNN training dynamics, also elucidated by several
recent studies. Despite this, contemporary studies on GLT, in general, have not
fully exploited inherent pathways in the graph structure and identified tickets in
an iterative manner, which is time-consuming and inefficient. address these
limitations, we introduce TEDDY, a one-shot edge spar: on framework that
leverages structural information by incorporating edge-degree information. Follow-
ing edge sparsification, we encourage the parameter sparsity during training via
simple projected gradient descent on the £ ball. Given the target sparsity levels for
both the graph structure and the model parameters, our TEDDY facilitates efficient
and rapid realization of GLT within a single training. Remarkably, our experimen-
tal results demonstrate that TEDDY significantly surpasses conventional iterative
approaches in generalization, even when conducting one-shot sparsification that
solely utilizes graph structures, without taking node features into account.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph-structured
data and addressing diverse graph-based tasks, such as node classification (Kipf & Welling, 2016;
Hamilton et 2017; Xu et al., 2018b; Wang et al ); Park et al., 2021), link prediction (Zhang
& Chen, 8; Lietal, 201 un et al., 2021b; Ahn & Kim, 2021; Zhu et al., 2021), and graph
classification (Hamilton et al 17; Xu et 2018b; Lee et al., 2018; Sui et al., 2022; Hou et al.,
2022). In conjunction with the notable performance achieved in GNN, a substantial number of
recent attempts have been made to handle large-scale real-world datasets. Owing to this, datasets and
network architectures in graph-related tasks have progressively become more intricate, which incurs
the notorious computational overhead both in training and inference.

In response to this challenge, GNN compression has emerged as one of the main research areas in
GNN communities, and the Graph Lottery Ticket (GLT) hypothesis was articulated (Chen et al.,
2021), serving as an extension of the conventional lottery ticket hypothesis (LTH, Frankle & Carbin
(2019)) for GNN. Analogous to the conventional LTH, Chen et al. (2021) claimed that the GNNs
possess a pair of core sub-dataset and sparse sub-network with admirable performance, referred to as
GLT, which can be jointly identified from the original graph and the original dense model. In order to
identify GLT, Chen et al. (2021) employ an iterative pruning as LTH where the edges/parameters are
pruned progressively through multiple rounds until they arrive at the target sparsity level.

In parallel with advancements in GNN compression, a surge of recent studies has begun to underscore
the increasing significance of graph structure over node features in GNN training dynamics. Notably,
Tang & Liu (2023) have derived generalization error bounds for various GNN families. Specifically,
they have discovered that the model generalization of GNNs predominantly depends on the graph

“Equal contribution.




Overview of TEDDY

(a) Edge-centric MP

(c) ¢y Projection

(b) Distill KL Loss L4
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Component 1 - Graph Sparsification

#1 Aggregate degree information in a multi-level perspective
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In practice, TEDDY requires O(N+M) space complexity,
as Teqge is only computed for the existing edges



Component 2 - Parameter Sparsification

#1 Distillation from Dense GNNs

o

Zdense [Z] Zt Z]

L4(G,0) := L(G,0) + A\ KL (softmax(Z), softmax(Zgense ))

To improve the model generalization,
match the logits learned from the entire graph

#2 Projected Gradient Descent on £ ball
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Encourage the desired level of sparsity h
without iterative process
Cp :={O € R?: ||©||o = h}: h-sparse £, ball
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Results on Small- and Medium-scale Graphs
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Results on Extreme Sparsity Regimes

TEDDY still surpasses the original performance in 14 out of 15 settings

Simulations Vanilla 20-th 25-th 30-th 35-th 40-th
GS(%) 0 64.14 72.25 78.53 83.38 87.14
WS(%) 0 64.15 72.26 78.54 83.39 87.15

Cora 76.34 +£0.79 | 76.20 +£0.69 | 76.64 +0.76 | 77.38 097 | 77.20 +1.12 | 76.82 £+ 1.00
Citeseer 68.10 £0.77 | 71.16 - 0.66 | 70.58 +1.43 | 71.54 +0.52 | 71.42 +0.56 | 71.12 + 0.51
Pubmed 7790 +0.14 | 79.70 £0.26 | 79.36 +0.71 | 79.68 £ 0.37 | 80.48 + 0.50 | 80.98 + 0.42

Progressive improvement is observed with the increment in sparsity ratio (3.08% T on Pubmed)




Summary

= We presented a novel edge sparsification method Contactinfo — Papertink
that considers the Graph Structural Information

= TEDDY successfully identifies GLT within a Single Training

= As future work, we plan to investigate how to incorporate the
node feature information into our framework

For more details,
please join our poster session!

Thank you ()
13



