

MMICL

Empowering Vision-language Model with Multi-Modal In-Context Learning Ability

Haozhe Zhao^{1,2}, Zefan Cai¹, Shuzheng Si¹, Xiaojian Ma³, Kaikai An¹, Liang Chen¹, Zixuan Liu⁴, Sheng Wang⁴, Wenjuan Han⁵, Baobao Chang¹

¹ National Key Laboratory for Multimedia Information Processing, Peking University
² School of Software and Microelectronics, Peking University, China
³ National Key Laboratory of General Artificial Intelligence, BIGAI
³ School of Intelligence Science and Technology, Peking University
⁴ Paul G. Allen School of Computer Science and Engineering, University of Washington
⁵ Beijing Jiaotong University

VLMs may suffer from the following three limitations:

Hard to Understand Text-to-Image Reference

Hard to Understand the Relationships between Multiple Images

Hard to Learn from In-Context Multi-Modal Demonstrations

Comparison of different VLM architectures

Design of Context Scheme of MMICL

Original VL Task Visual Question Answering

Are the men and women are quarrelling? Answer: Yes

Image Captioning

An airplane flying

in the sky.

(a) Image Declaration

Carefully analyze image $j: [IMG_i]$

to answer the question.

O: Are the men and women are quarrelling? A: Yes

The image j is $[IMG_i]$

Carefully analyze image *j* to

description that accurately

scenery present.

generate a concise and accurate

represents the objects, people, and

(b) Multi-modal Data with Interconnected Images

Carefully analyze images to answer the question. In image 0: $[IMG_0]$, is image 1: $[IMG_1]$ quarrelling with image 2: $[IMG_2]$?

(c) Unified Multi-modal-in-context Format

Q: The image 0 is $[IMG_0]$. Carefully analyze the

image 0 to generate a concise and accurate description that accurately represents the objects, people, or scenery present. A: An airplane flying in the sky.

Q: The image j is $[IMG_j]$

. Carefully analyze the

image *j* to generate a concise and accurate description that accurately represents the objects, people, or scenery present. **A**:

Manual Annotation

4

Image Proxy [IMG]

Data Construction Pipeline

Task Description:
Carefully analyze images to answer the question.Image Description:Image 0: [IMG0]Image JunceImage 1: [IMG1]Image 2: [IMG2]Image 3: [IMG3]Image 4: [IMG4]Image 5: [IMG5]Image 6: [IMG6]Image 7: [IMG7]Image 6: IMG6]

Step4: Data Construction

Input of Data Format: Processed Instuction: Conduct a meticulous examination of the visual details within the images, employing critical analysis and attention to ... Question: Why is image 7 inside of a cage? Options: Choice 0: Image 7 is about to attack image 1 and image 2 . Choice 1: Because there is a swarm of butterflies there. Choice 2: Image 3 has a pet bird in the cage. Choice 3: Image 7 is in the cage so that it can't fly away.

Output of Data Format: The answer is Choice 3.

Data Construction Pipeline

Annotation from Existing Datasets

Question: What is this bird called? Answer: parrot.

Image:

Question: Is it an indoors or outdoors scene? Answer: indoors.

Image:

Question: What color is the helmet in the middle of the image? Answer: light blue.

Image:

Question: Are there napkins under the utensil? Answer: yes.

Data Construction

Image 3: [IMG3] / . Carefully analyze the image 3 to generate a concise and accurate answer. Q: Are there napkins under the utensil? A: Output of Data Format: The answer is yes.

for clarification and support.

Data Construction Pipeline

Annotation from Existing Datasets Image0 Image1 and the dried/smoked prav Image3 Image2 Or dried Crayfish if you prefer Or dried Crayfish if you prefer Image4 Image5 1 or 2 scoops of tomato pur 1 or 2 scoops of tomato pur Image6 Image7 some salt and stir Cover and cook for 30-45 minute

Caption: in a kitchen a woman adds different ingredients into the pot and stirs it

Data Construction

Input of Data Format: Task Description: Carefully analyze a series of images and give a brief caption

Image Description:

Create descriptive captions that accurately reflect the content and context of the provided images.

Output of Data Format:

The summarization of images can be: in a kitchen a woman adds different ingredients into the pot and stirs it.

Data Source

MMICL Architecture & Training Paradigm

Figure 4: Illustration of MMICL architecture and training paradigm. The upper part denotes the overview of model architecture and the bottom denotes the pipeline of the two-stage training paradigm.

General Performance Evaluation

		Cognition			Perception											
Model	Model Size	Comm.	Num.	Text.	Code.	Existen.	Count	Pos.	Color	OCR	Poster	Cele.	Scene	Land.	Art.	Total Avg.
LLaVA	13B	57.14	50.00	57.50	50.00	50.00	50.00	50.00	55.00	50.00	50.00	48.82	50.00	50.00	49.00	51.25
MiniGPT-4	13B	59.29	45.00	0.00	40.00	68.33	55.00	43.33	75.00	57.50	41.84	54.41	71.75	54.00	60.50	51.85
MultiModal-GPT	9B	49.29	62.50	60.00	55.00	61.67	55.00	58.33	68.33	82.50	57.82	73.82	68.00	69.75	59.50	62.97
VisualGLM-6B	6B	39.29	45.00	50.00	47.50	85.00	50.00	48.33	55.00	42.50	65.99	53.24	146.25	83.75	75.25	63.36
VPGTrans	7B	64.29	50.00	77.50	57.50	70.00	85.00	63.33	73.33	77.50	84.01	53.53	141.75	64.75	77.25	74.27
LaVIN	13 B	87.14	65.00	47.50	50.00	185.00	88.33	63.33	75.00	107.50	79.59	47.35	136.75	93.50	87.25	86.66
LLaMA-Adapter-V2	7B	81.43	62.50	50.00	55.00	120.00	50.00	48.33	75.00	125.00	99.66	86.18	148.50	150.25	69.75	87.26
mPLUG-Owl	7B	78.57	60.00	80.00	57.50	120.00	50.00	50.00	55.00	65.00	136.05	100.29	135.50	159.25	96.25	88.82
InstructBLIP	12.1B	129.29	40.00	65.00	57.50	185.00	143.33	66.67	153.33	72.50	123.81	101.18	153.00	79.75	134.25	107.47
BLIP-2	12.1B	110.00	40.00	65.00	75.00	160.00	135.00	73.33	148.33	<u>110.00</u>	141.84	105.59	145.25	138.00	<u>136.50</u>	113.13
Lynx	7B	110.71	17.50	42.50	45.00	<u>195.00</u>	<u>151.67</u>	<u>90.00</u>	<u>170.00</u>	77.50	124.83	118.24	164.50	162.00	119.50	113.50
GIT2	5.1B	99.29	50.00	67.50	45.00	190.00	118.33	96.67	158.33	65.00	112.59	145.88	<u>158.50</u>	140.50	146.25	113.85
Otter	9B	106.43	72.50	57.50	70.00	195.00	88.33	86.67	113.33	72.50	138.78	172.65	158.75	137.25	129.00	114.19
Cheetor	7B	98.57	77.50	57.50	87.50	180.00	96.67	80.00	116.67	100.00	147.28	164.12	156.00	145.73	113.50	115.79
LRV-Instruction	7B	100.71	70.00	85.00	72.50	165.00	111.67	86.67	165.00	110.00	139.04	112.65	147.98	<u>160.53</u>	101.25	116.29
BLIVA	12.1B	<u>136.43</u>	57.50	<u>77.50</u>	60.00	180.00	138.33	81.67	180.00	87.50	155.10	140.88	151.50	89.50	133.25	<u>119.23</u>
MMICL	12.1B	136.43	82.50	132.50	77.50	170.00	160.00	81.67	156.67	100.00	146.26	141.76	153.75	136.13	135.50	129.33

Table 1: Evaluation results on the MME. Top two scores are highlighted and underlined, respectively.

Performance Prob

Performance Prob

Text-to-Image Reference

Table 2: Results	on Winoground	across text,	image
and group score	metrics.		

Model	Text	Image	Group
MTurk Human	89.50	88.50	85.50
VQ2 (Yarom et al., 2023)	47.00	42.20	30.50
PALI (Chen et al., 2022)	46.50	38.00	28.75
Blip-2 (Li et al., 2023d)	44.00	26.00	23.50
GPT4-V (Wu et al., 2023)	69.25	46.25	39.25
MMICL (FLAN-T5-XXL)	45.00	45.00	43.00

Image-to-Image Relationships

Table 3: Zero-shot generalization on Raven IQ test.

Model	Accuracy
Random Choice	17
InstructBlip (Dai et al., 2023)	10.00
Otter (Li et al., 2023a)	22.00
KOSMOS-1 (Huang et al., 2023a)	22.00
MMICL (FLAN-T5-XXL)	34.00

Performance Prob

Multi-Modal In-Context Learning

Model	Flickr 30K	WebSRC	VQAv2	Hateful Memes	VizWiz			
Flamingo-3B (Alayrac et al., 2022) (w/o ICL example)	60.60	-	49.20	53.70	28.90			
Flamingo-3B (Alayrac et al., 2022) (w/ ICL examples (4))	72.00		53.20	53.60	34.00			
Flamingo-9B (Alayrac et al., 2022) (w/o ICL example)	61.50	-	51.80	57.00	28.80			
Flamingo-9B (Alayrac et al., 2022) (w/ ICL examples (4))	72.60		56.30	62.70	34.90			
KOSMOS-1 (Huang et al., 2023b) (w/o ICL example) KOSMOS-1 (Huang et al., 2023b) (w/ ICL examples (4))	67.10 75.30	3.80	51.00 51.80	<u>63.90</u>	29.20 35.30			
w/o ICL	example							
BLIP-2 (Li et al., 2023d) (FLANT5-XL)	64.51	12.25	58.79	60.00	25.52			
BLIP-2 (Li et al., 2023d) (FLANT5-XXL)	60.74	10.10	60.91	62.25	22.50			
InstructBLIP (Dai et al., 2023) (FLANT5-XL)	77.16	10.80	36.77	58.54	32.08			
InstructBLIP (Dai et al., 2023) (FLANT5-XXL)	73.13	11.50	63.69	61.70	15.11			
ICL example Evaluation								
MMICL (FLAN-T5-XL) (w/o ICL example)	83.47	12.55	62.17	60.28	25.04			
MMICL (FLAN-T5-XL) (w/ ICL examples (4))	83.84	12.30	62.63	60.80	50.17			
MMICL (FLAN-T5-XXL) (w/o ICL example)	85.03	$\frac{18.85}{18.70}$	69.99	60.32	29.34			
MMICL (FLAN-T5-XXL) (w/ ICL examples (4))	89.27		69.83	61.12	33.16			
MMICL (Instruct-FLAN-T5-XL) (w/o ICL example)	82.68	14.75	69.13	61.12	29.92			
MMICL (Instruct-FLAN-T5-XL) (w/ ICL examples (4))	88.31	14.80	69.16	61.12	33.16			
MMICL (Instruct-FLAN-T5-XXL) (w/o ICL example)	73.97	17.05	70.30	62.23	24.45			
MMICL (Instruct-FLAN-T5-XXL) (w/ ICL examples (4))	<u>88.79</u>	19.65	70.56	64.60	50.28			

Hallucination & Language Bais

Model	Model Size	Average Performance	Don't Require Visual Infomation	Require Visual Infomation	Performance Gap
Random Guess	-	35.50	35.80	34.90	-
Ying-VLM (Li et al., 2023e)	13.6B	55.70	66.60	44.90	21.70
InstructBLIP (Dai et al., 2023)	12.1B	71.30	82.00	<u>60.70</u>	21.30
Otter (Li et al., 2023a)	9B	63.10	70.90	55.70	15.20
Shikra (Chen et al., 2023a)	7.2B	45.80	52.90	39.30	13.60
MMICL	12.1B	82.10	82.60	81.70	0.90

Ablation Study

Ablation Study on Training Paradigm

Model	VSR	IconQA text	VisDial	IconQA img	Bongard HOI
	Stage	Ι			
Stage I (Blip-2-FLANT5-XL)	61.62	45.44	35.43	48.42	52.75
Stage I (Blip-2-FLANT5-XXL)	63.18	50.08	36.48	48.42	59.20
Stage I (InstructBLIP-FLANT5-XL)	61.54	47.53	35.36	50.11	53.15
Stage I (InstructBLIP-FLANT5-XXL)	65.06	51.39	36.09	45.10	63.35
Stag	ge I + S	tage II			
Stage I + Stage II (BLIP-2-FLAN-T5-XL)	62.85	47.23	35.76	51.24	56.95
Stage I + Stage II (BLIP-2-FLAN-T5-XXL)	64.73	50.55	<u>37.00</u>	34.93	68.05
Stage I + Stage II (InstructBLIP-FLAN-T5-XL)	70.54	52.55	36.87	47.27	74.20
Stage I + Stage II (InstructBLIP-FLAN-T5-XXL)	<u>66.45</u>	<u>52.00</u>	37.98	60.85	67.20

Ablation Study on Context Scheme

Model	$\mathrm{MME}_{\mathrm{Perception}}$	$\mathrm{MME}_{\mathrm{Cognition}}$	Icon-QA	NLVR2	Raven	Winoground
- w/o context scheme	1238.99	316.79	52.80	56.65	8.00	6.00
- w/o image declaration	1170.87	341.07	47.15	61.00	18.00	3.00
- w/o in-context format	1141.02	<u>345.36</u>	51.95	<u>62.63</u>	28.00	20.00
- w/o interrelated images	1207.70	333.21	54.35	59.60	16.00	25.75
MMICL	1303.59	370.71	58.12	72.45	32.00	38.75

To we address the limitation of most VLMs, we introduce the MMICL, a new approach to allow the VLM to deal with multi-modal inputs efficiently.

We propose a novel context scheme to augment the in-context learning ability of the VLM and constructe the MIC dataset under the guidance the proposed context scheme for tuning the VLM.

MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. It achieves new SOTA zero-shot performance on a wide range of general vision-language and complex benchmarks.

Paper& Code & Data: MMICL