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Motivations

Deep Reinforcement Learning (DRL) in Safety-Critical Applications

Autonomous driving [1] Industry applications [2] Autonomous Exploration [3] Autonomous Flight [4]

[1] https://bernardmarr.com/how-tesla-is-using-artificial-intelligence-to-create-the-autonomous-cars-of-the-future/

[2] Liu, Quan, et al. "Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function." Advanced Engineering Informatics 49 (2021): 101360.
[3] Lee, Joonho, et al. "Learning quadrupedal locomotion over challenging terrain."” Science robotics 5.47 (2020): eabc5986.

[4] https://www.traveldailymedia.com/autonomous-aircraft-market-research/
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Unsolved problems:

= Safety and stability:

* Hard to verify DNNs due to high dimensionalities and high nonlinearities.

Hard to predict the output of DNNs due to the vulnerability to the
disturbances.

Purely data-driven DNN applied to physical systems can infer relations
violating physics laws.

= Sampling complexity:

* High demand of training data.
* Unsafe explorations.

Can we use the physics knowledge about the system to
‘regulate’ DRL to make it safer and more reliable in

Safety-Critical Applications?



Contributions

Overview:

-

Phy-DRL Agent

Critic Network Actor Network

data-driven action
policy agy1 (k)

Invariant Embedding 3
Physics-Knowledge-Enhanced DNN
* NN Editing
* NN Input Augmentation

Invariant Embedding 1

Residual Action Policy:
a(k) = adrl(k) + aphy(k)

model-based action policy

aphy (k) = F-s(k)
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Invariant Embedding2 | [ Physics Model Knowledge:
Safety-Embedded Reward | L (A, B)
Phy-DRL:

A Physics-regulated Deep Reinforcement Learning Framework

Environment

--------------------------------------------

[ . . . \
i Residual Action Policy:
i Integrating data-driven DRL action policy |
1 . . . 1
I and physics-model-based action policy. !
\ U

Safety-Embedded Reward:

i

1

i

I In conjunction with the Residual Action

i Policy, empowers the Phy-DRL with a

i mathematically provable safety guarantee
\ and fast training.

N ——————

-------------------------------------------

Physics-Knowledge-Enhanced

Critic and Actor Networks:
Including input augmentation and network
editing for guaranteeing strict compliance
with available knowledge about the action-
value function and action policy.
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Residual Action Policy
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Integrating data-driven DRL action policy and physics-model-based action policy.

fPhysics-ModeI-Based A phy(t)

'L Policy

State S(t)
DRL Policy

State S(t+ 1)

Reward R(t + 1) Action A(t) =
A_dri(t) + A_phy(t)

Environment
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--------------------------------------------------------------------

Real plant
s(k+1) = As(k) + Ba(k) + f(s(k),a(k)), keN

Safety constraints

X {seR"|v<D-s—v <V},

___________________________________________________________________

_________________________________________________________________
f \\

Physics-Model-Based Policy \‘
Safety envelope E
Q2 {seR"sPs<1, P>0}.
Obtained by computing feedback Matrix F E
aphy (k) = Fs(k) , where F is obtained via solving LMIs ,.i

t=k ’
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----------------------------------------------------------------------
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In conjunction with the Residual Action Policy, empowers the Phy-DRL with a

mathematically provable safety guarantee and fast training.
Safety-Embedded Reward

r(s(k),s(k+1))=s(k)T-AT-P-A-s(k)— s(k+1)T"-P-s(k+1), where A=A+ BF

V(5(k + 1)) V(s(k+ 1))
R L. . U
Predicted value using linear model The value calculated using i Safety Set 5 i Equilibrium Point !
and model-based controller measured states from the real system R S ! S !

Mathematically provable safety guarantee

Consider the safety set X, the safety envelope (), and the system under control of Phy-DRL. The
matrices F and P involved in the model-based action policy and the safety-embedded reward are r(s(k),s(k + 1))

computed according to a—1

F:R'Qil; quila

where R and Q1 satisfy

' ' T T' T r 9
A.(3+%-R Q-A BR B =0, witha givena € (0,1).

Given any s(1) € €, the system state s(k) € Q2 C X holds Vk € N (i.e., the safety of system (1) is
guaranteed), if the sub-reward r(s(k),s(k + 1)) satisfies r(s(k),s(k+ 1)) > a — 1, Vk € N.

Safety Envelope
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Including input augmentation and network editing for guaranteeing strict compliance with
available knowledge about the action-value function and action policy.

(a) Physics-Knowledge-Enhanced DNN

Input Augmentation:
Catching hard to learn quantities

Network Editing:

Ensuring The end-to-end input/output of Vo  [MISSSARASAS RS
the actor network strictly complies with = : 4
available knowledge :O:—'—
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Monte Carlo Simulation results in a non-linear cart-pole system
Phy-DRL can render the safety envelope invariant, where the others fail.

Blue points  Safe Internal-Envelope (IE) Sample = s: if s(1) =5 € €, thens(k) € Q,Vk € N.

Green points Safe External-Envelope (EE) Sample = 5: if s(1) =5 € X, thens(k) € X\ Q, 3k € N.
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Experimental Results

Quadruped robot locomotion
Phy-DRL is a more robust and safer action policy in safe center-gravity management,

safe lane tracking and safe velocity regulation test in four testing scenarios.
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We proposed a Phy-DRL framework with three invariant embeddings to improve
safety assurance for DRL-enabled systems

= Residual Action Policy :

* Using model-based controller to catch causality
* Using data-driven DRL to deal with model mismatch
* Less data dependencies

» Safety-Embedded Reward :
* Efficient construction of reward function using P matrix
* Encourage learning a safe and stable policy simultaneously
* Provide mathematically provable safety guarantees for DRL

= Physics-Knowledge-Enhanced Critic and Actor Networks:

* Augmentinginput using physics model knowledge to catch the hard-to-learn quantities
* Ensuring The end-to-end input/output of the actor network strictly complies with available

knowledge
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