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Motivations

Deep Reinforcement Learning (DRL) in Safety-Critical Applications 
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Autonomous driving [1] Industry applications [2] Autonomous Exploration [3] Autonomous Flight [4]



Motivations
Unsolved problems: 

▪ Safety and stability:

Can we use the physics knowledge about the system to 

‘regulate’ DRL to make it safer and more reliable in

 Safety-Critical Applications?

• Hard to verify DNNs due to high dimensionalities and high nonlinearities. 
• Hard to predict the output of DNNs due to the vulnerability to the 

disturbances.
• Purely data-driven DNN applied to physical systems can infer relations 

violating physics laws.

• High demand of training data.
• Unsafe explorations.

▪ Sampling complexity:

  



Contributions
Overview:

Invariant Embedding 1

Invariant Embedding 2

Invariant Embedding 3

Residual Action Policy: 
Integrating data-driven DRL action policy 
and physics-model-based action policy.

Safety-Embedded Reward:
In conjunction with the Residual Action 
Policy, empowers the Phy-DRL with a 
mathematically provable safety guarantee 
and fast training. 

Physics-Knowledge-Enhanced 

Critic and Actor Networks:
Including input augmentation and network 
editing for guaranteeing strict compliance 
with available knowledge about the action-
value function and action policy.

Phy-DRL:
 A Physics-regulated Deep Reinforcement Learning Framework



Residual Action Policy
Integrating data-driven DRL action policy and physics-model-based action policy.

DRL Policy

Environment

State 𝐒(𝒕)

Action A 𝒕 =  

A_𝒅𝒓𝒍 𝒕  + A_𝒑𝒉𝒚 𝒕

State S 𝒕 + 𝟏  

Reward R 𝒕 + 𝟏  

Physics-Model-Based 

Policy

A_𝒅𝒓𝒍 𝒕

A_𝒑𝒉𝒚 𝒕

Real plant

   

Safety constraints

   

Safety envelope

   

Obtained by computing feedback Matrix F

   

Physics-Model-Based Policy

DRL Policy

Learned by maximizing the expected return

   

, where F is obtained via solving LMIs



Safety Embedded Reward
In conjunction with the Residual Action Policy, empowers the Phy-DRL with a 
mathematically provable safety guarantee and fast training.

𝒓 𝒔 𝒌 , 𝒔(𝒌 + 𝟏)  = 𝒔 𝒌 𝑻 · ഥ𝑨𝑻 · 𝑷 · ഥ𝑨 · 𝒔 𝒌 −  𝒔 𝒌 + 𝟏 𝑻 · 𝑷 · 𝒔 𝒌 + 𝟏 , where ഥ𝑨 = 𝑨 + 𝑩𝑭

𝑉 ҧ𝑠 𝑘 + 1 𝑉 𝑠 𝑘 + 1

Predicted value using linear model 

and model-based controller  
The value calculated using 

measured states from the real system

Mathematically provable safety guarantee

Safety-Embedded Reward



Physics-Knowledge-Enhanced Networks
Including input augmentation and network editing for guaranteeing strict compliance with 
available knowledge about the action-value function and action policy.

Input Augmentation:
Catching hard to learn quantities

Network Editing:
Ensuring The end-to-end input/output of 
the actor network strictly complies with 
available knowledge 



Experimental Results
Monte Carlo Simulation results in a non-linear cart-pole system
Phy-DRL can render the safety envelope invariant, where the others fail.  
 

Blue points

Phy-DRL Linear model based DRL without residual

Green points



Experimental Results
Quadruped robot locomotion
Phy-DRL is a more robust and safer action policy in safe center-gravity management, 
safe lane tracking and safe velocity regulation test in four testing scenarios.   



Conclusions  

We proposed a Phy-DRL framework with three invariant embeddings to improve 
safety assurance for DRL-enabled systems

▪ Safety-Embedded Reward : 

• Efficient construction of reward function using P matrix
• Encourage learning a safe and stable policy simultaneously 
• Provide mathematically provable safety guarantees for DRL

▪ Residual Action Policy :

• Using model-based controller to catch causality 
• Using data-driven DRL to deal with model mismatch 
• Less data dependencies 

▪ Physics-Knowledge-Enhanced Critic and Actor Networks:

• Augmenting input using physics model knowledge to catch the hard-to-learn quantities
• Ensuring The end-to-end input/output of the actor network strictly complies with available 

knowledge 
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The Twelfth International Conference

on Learning Representations

Scan to know More


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

