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Random Fourier Feature Maps for Approximating Feed Forward Layers

e Feed Forward Layer (FFL)
x — f(Wx+b), z € R, W € R*? b € Rl(bias), f : R — R ( activation function)

e Random Features for Approximation of FFL
Ky(x,(W,b)) :=E[®s(x) ¥ (W,b)]

o &R 5 R™ U, : R x R — R™satisfy: f(w x +b) = E[®(x)" U (w,b)]
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Benefits of such a Mechanism

e Network Compression : Instead of transforming layer parameters with W, one can directly
learn vectors LIJf(w, b). Then the number of trainable parameters becomes O(m/) rather than
O(/d) for m << d, reducing the parameter count.

e Computational Savings : if Random Features (RF) can be constructed efficiently, then the

overall time complexity (given pre-computed embeddings LIJf(w,b) is sub-quadratic in layers'
dimensionalities.

e Deep Neural Network (NN) Bundling Process : a two-tower representation can be used

iteratively to compactify multiple FFLs of NNs, the process we refer to as neural network
bundling leading to the computational gains.
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How can we construct such a mechanism?

Write f as the inverse Fourier transform of it’s Fourier transform I and write I as the sum of
positive and negative parts of it’s real and imaginary parts.

~

f(x,w,b) = cE. 5[S(&,b) exp(X' (&)w(€))] where
f := inverse Fourier transform of positive real part of F,

¢ := suitably chosen constant

5(§,b) = %exp(%iﬁb), X(&) = p(&)x, w(&) =n(§)w, where p(£),n(S) € C satisfy: p(§)n(§) = 2mig

p is related to the distribution attached to the inverse Fourier transform of F

Note : the exp term can be linearized by techniques developed by many authors (see Performer
for ex.)



SNNKs are strictly more general than FFL

e @ andW are defined as:

B(x) = ReLU(\%Gx), U (w,b) ReLU(\%Gw)

for the Gaussian matrix: G € R"*¢ with entries sampled independently at random
from N(0, 1)



SNNKs are strictly more general than FFL

e @ andW are defined as:
B(x) = ReLU(\%Gx), U (w, b) = ReLU(\%Gw)

for the Gaussian matrix: G € R™*¢ with entries sampled independently at random from N (0, 1)

e Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel K, : R x R — R
1
is defined as: K, (x,y) = —||x||5|lyll5 J.(axy) where axy € [0,7] is the angle between x and

o (m—0
d — (— N[ n+1
y and J(0) := (—1)"(sin @) 50n (sin@)




SNNKs are strictly more general than FFL

o @ andW are defined as:
1 1
®(x) = ReLU(—=Gx), ¥(w,b) = ReLU(—GWwW
(x) <ﬂ ), ¥(w,b) (ﬂ )

for the Gaussian matrix: G € R with entries sampled independently at random from N(0, 1)

® Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel K, :R*xR? - R s
definedas: K,(x,y)= l||X||721Hy”72%,]n(04x7y\)/here axy € [0, s the angle between x and y
s " -
and  J(0) := (=1)"(sin@)""* ) (W 0)

oo™ \ sin 6

e Then K, can be linearized as:
K, (x,y) = 2E[[a(x) Th(y)] for Tn(v) € ReLU((v'w)") and w ~ N(0,1,)



SNNKs are strictly more general than FFL

® and W are defined as:
1 1
®(x) = ReLU(—=Gx), ¥(w,b) = ReLU(—GWwW
() = ReLU(—-Gx). W(w.}) = ReLU(—-Gw)

for the Gaussian matrix: G € R with entries sampled independently at random from N(0, 1)

Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel K, :R* xR - R s

definedas: K, (x,y)= l||x||72”LHyH72’LJ,FL(04X7Y\)/here axy € [0, 7]s the angle between x and y
s " .

and  J(0) := (=1)"(sin@)""* ) (W 0)

oo™ \ sin 6

Then K,, can be linearized as:

K, (x,y) = 2E[[,(x) T, (y)] for [,,(v) =

= ReLU((v'w)") and w ~ N(0,1,)

ReLU-SNNK layer is not a regular FFL since it can not be written as f(x'w + b) for some f: R — R



Experiments-1

e Based on SNNK, design novel adapter layers. In this case, only adapter layers are trained while the
base model is frozen.

Dataset # Training Parameters RTE MRPC QNLI QQP SST-2 MNLI STSB COLA
Full fine-tuning 110M 66.2 90.5 91.3 914 926 84.1 88.8 59.5
Adapter (Moosavi et al 2022) .9M 63.83 84.8 90.63 88.12 91.74 83.53 88.48 56.51
ReLU-SNNK-Adapter (ours) .3M 69.68 91.26 90.44 85.82 9231 82.06 88.81 58.21

Table showing results on SNNK-adapters on the GLUE benchmark using the BERT model as the pretrained
model. Our methods perform favorably with various baselines even with at least 3x fewer parameters.
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Table showing results on SNNK uptraining on the GLUE benchmark using the BERT model as the pretrained
model. We compress the BERT model by almost half without much degradation in performance.




Experiments-3
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Results on CiFAR-10, CiFAR-100 and ImageNet. Top row: SNNK-adapter results. Bottom row: (left)
Adapter-SNNK on ImageNet and (right) Bundled ViT results



For more results see our paper and come to our poster session

Thank you!
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