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Benefits of such a Mechanism

● Network Compression : Instead of transforming layer parameters with Ψ, one can directly 
learn vectors Ψ𝘧(𝒘, 𝐛). Then the number of trainable parameters becomes O(𝘮𝘭) rather than 
O(𝘭𝘥) for 𝘮 << 𝘥,  reducing the parameter count.

● Computational Savings :  if Random Features (RF) can be constructed efficiently, then the 
overall time complexity (given pre-computed embeddings Ψ𝘧(𝒘,𝐛) is sub-quadratic in layers' 
dimensionalities.

● Deep Neural Network (NN) Bundling Process :  a two-tower representation can be used 
iteratively to compactify multiple FFLs of NNs, the process we refer to as neural network 
bundling leading to the computational gains.
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● 𝑝 is related to the distribution attached to the inverse Fourier transform of 𝐹
● Note : the exp term can be linearized by techniques developed by many authors (see Performer 

for ex.)
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● Then       can be linearized as: 

● ReLU-SNNK layer is not a regular FFL since it can not be written as 



Experiments-1

● Based on SNNK, design novel adapter layers. In this case, only adapter layers are trained while the 
base model is frozen.

Table showing results on SNNK-adapters on the GLUE benchmark using the BERT model as the pretrained 
model. Our methods perform favorably with various baselines even with at least 3x fewer parameters.



Experiments-2

Table showing results on SNNK uptraining on the GLUE benchmark using the BERT model as the pretrained 
model. We compress the BERT model by almost half without much degradation in performance.



Experiments-3

Results on CiFAR-10, CiFAR-100 and ImageNet. Top row: SNNK-adapter results. Bottom row: (left) 
Adapter-SNNK on ImageNet and (right)  Bundled ViT results



For more results see our paper  and come to our poster session

Thank you!
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