
Scalable Neural Network Kernels

Arijit Sehanobish*, Krzysztof Choromanski*, Yunfan Zhao*,
Avinava Dubey*, Valerii Likhosherstov*

* Equal Contribution
Correspondence to kchoro@google.com, arijit.sehanobish1@gmail.com

mailto:kchoro@google.com
mailto:arijit.sehanobish1@gmail.com

Random Fourier Feature Maps for Approximating Feed Forward Layers

● Feed Forward Layer (FFL)

Random Fourier Feature Maps for Approximating Feed Forward Layers

● Feed Forward Layer (FFL)

● Random Features for Approximation of FFL

Random Fourier Feature Maps for Approximating Feed Forward Layers

● Feed Forward Layer (FFL)

● Random Features for Approximation of FFL

●

Random Fourier Feature Maps for Approximating Feed Forward Layers

● Feed Forward Layer (FFL)

● Random Features for Approximation of FFL

●

Benefits of such a Mechanism

● Network Compression : Instead of transforming layer parameters with Ψ, one can directly
learn vectors Ψ𝘧(𝒘, 𝐛). Then the number of trainable parameters becomes O(𝘮𝘭) rather than
O(𝘭𝘥) for 𝘮 << 𝘥, reducing the parameter count.

● Computational Savings : if Random Features (RF) can be constructed efficiently, then the
overall time complexity (given pre-computed embeddings Ψ𝘧(𝒘,𝐛) is sub-quadratic in layers'
dimensionalities.

● Deep Neural Network (NN) Bundling Process : a two-tower representation can be used
iteratively to compactify multiple FFLs of NNs, the process we refer to as neural network
bundling leading to the computational gains.

How can we construct such a mechanism?

● Write 𝑓 as the inverse Fourier transform of it’s Fourier transform 𝐹 and write 𝐹 as
the sum of positive and negative parts of it’s real and imaginary parts.

How can we construct such a mechanism?

● Write 𝑓 as the inverse Fourier transform of it’s Fourier transform 𝐹 and write 𝐹 as the sum
of positive and negative parts of it’s real and imaginary parts.

● where

 - := the inverse Fourier transform of positive real part of 𝐹,

- 𝑐 := suitably chosen constant

-

How can we construct such a mechanism?

● Write 𝑓 as the inverse Fourier transform of it’s Fourier transform 𝐹 and write 𝐹 as the sum
of positive and negative parts of it’s real and imaginary parts.

● where

- := inverse Fourier transform of positive real part of 𝐹,

- 𝑐 := suitably chosen constant

-

● 𝑝 is related to the distribution attached to the inverse Fourier transform of 𝐹

How can we construct such a mechanism?

● Write 𝑓 as the inverse Fourier transform of it’s Fourier transform 𝐹 and write 𝐹 as the sum of
positive and negative parts of it’s real and imaginary parts.

● where

- := inverse Fourier transform of positive real part of 𝐹,

- 𝑐 := suitably chosen constant

-

● 𝑝 is related to the distribution attached to the inverse Fourier transform of 𝐹
● Note : the exp term can be linearized by techniques developed by many authors (see Performer

for ex.)

SNNKs are strictly more general than FFL

● Φ and Ψ are defined as:

for the Gaussian matrix: with entries sampled independently at random

from

SNNKs are strictly more general than FFL

● Φ and Ψ are defined as:

for the Gaussian matrix: with entries sampled independently at random from

● Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel

is defined as: where is the angle between 𝐱 and

𝐲 and

SNNKs are strictly more general than FFL

● Φ and Ψ are defined as:

for the Gaussian matrix: with entries sampled independently at random from

● Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel is

defined as : where is the angle between 𝐱 and 𝐲

and

● Then can be linearized as:

SNNKs are strictly more general than FFL

● Φ and Ψ are defined as:

for the Gaussian matrix: with entries sampled independently at random from

● Arc-cosine Kernels (Cho and Saul, 2011) : The nth-order arc-cosine kernel is

defined as : where is the angle between 𝐱 and 𝐲

and

● Then can be linearized as:

● ReLU-SNNK layer is not a regular FFL since it can not be written as

Experiments-1

● Based on SNNK, design novel adapter layers. In this case, only adapter layers are trained while the
base model is frozen.

Table showing results on SNNK-adapters on the GLUE benchmark using the BERT model as the pretrained
model. Our methods perform favorably with various baselines even with at least 3x fewer parameters.

Experiments-2

Table showing results on SNNK uptraining on the GLUE benchmark using the BERT model as the pretrained
model. We compress the BERT model by almost half without much degradation in performance.

Experiments-3

Results on CiFAR-10, CiFAR-100 and ImageNet. Top row: SNNK-adapter results. Bottom row: (left)
Adapter-SNNK on ImageNet and (right) Bundled ViT results

For more results see our paper and come to our poster session

Thank you!

https://openreview.net/pdf?id=4iPw1klFWa

