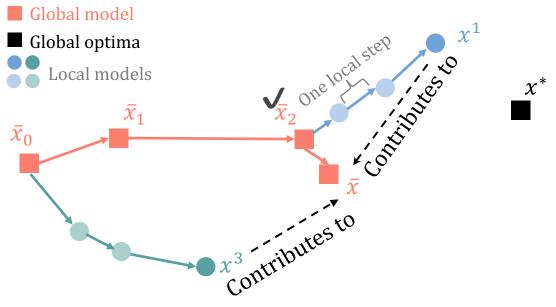

Tackling the Data Heterogeneity in Asynchronous Federated Learning with Cached Update Calibration

Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen.

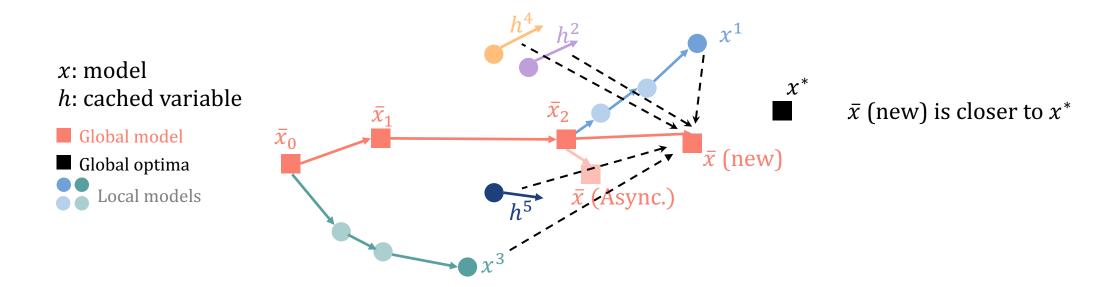
Asynchronous FL: Background

From synchronous FL to asynchronous FL (FedAsync*, FedBuff**): improve the training efficiency


*Xie, Cong, Sanmi Koyejo, and Indranil Gupta. "Asynchronous federated optimization." **Nguyen, John, et al. "Federated learning with buffered asynchronous aggregation."

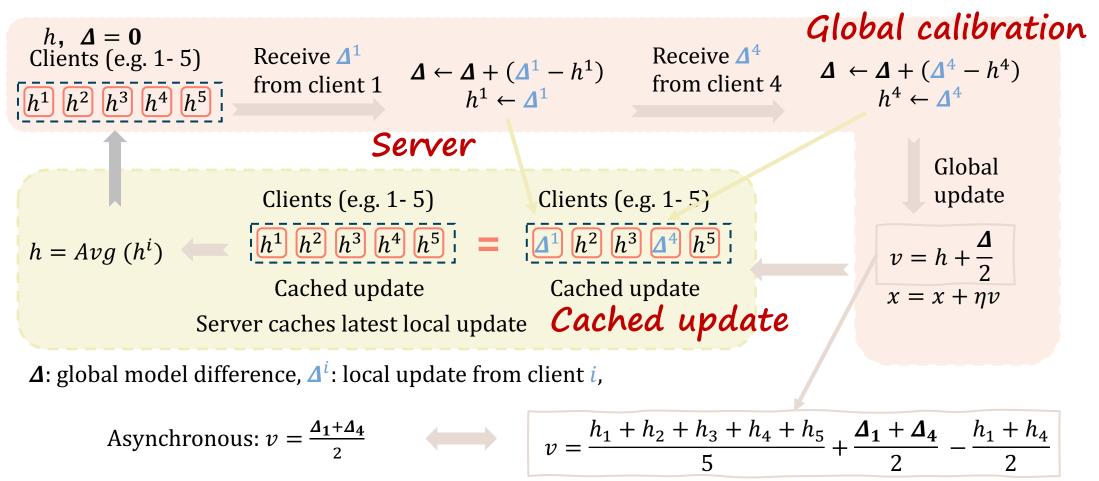
Asynchronous FL: Background

What makes Asynchronous FL less efficient?


- Client 1 and Client 3 may differ in data distribution
- x^1 is computed from a latest global model \overline{x}_2
- x^3 is computed from an outdated model \bar{x}_0 , but x^3 is update to \bar{x}_2
- The delay of Client 3 hurts convergence

Cache-Aided Asynchronous FL (CA²FL)

We want some help ("cached variable") from other clients, even they don't participate



Although x^3 is computed from a very outdated model, the cached update direction h^2 , h^4 , h^5 can help calibrate the update direction

Cache-Aided Asynchronous FL (CA²FL)

How to appropriately use cache variables?

Investigate the Convergence of Async. FL (FedBuff)

The convergence rate for FedBuff is $C\left(\frac{\sqrt{K}}{\sqrt{TM}}\sigma_g^2 + \frac{1}{\sqrt{TKM}} + \frac{K\tau_{max}\tau_{avg}\sigma_g^2 + \tau_{max}\sigma^2}{T}\right),$ T: total global rounds, K: #n of local updates, N: #n total clients, M: #n participated clients

The convergence degradation brought by the asynchronous delay τ is amplified by the high data heterogeneity (large σ_g^2)

Investigate the Convergence of CA²FL

The convergence rate for CA^2FL is

$$O\left(\frac{1}{\sqrt{TKM}} + \frac{(\tau_{max}+\zeta_{max})\sigma^2}{T}\right),$$

 ζ_{max} : maximum difference between cached step and current step

T: total global rounds, *K*: #n of local updates, *M*: #n participated clients

Comparing with the convergence of FedBuff

$$O\left(\frac{\sqrt{K}}{\sqrt{TM}}\sigma_g^2 + \frac{1}{\sqrt{TKM}} + \frac{K\tau_{max}\tau_{avg}\sigma_g^2 + \tau_{max}\sigma^2}{T}\right)$$

Merged with smaller order terms

Eliminate this term

Experiments

Experiments on image classification and language understanding

Method	Dir(0.3)		Dir(0.1)		
	CNN	ResNet-18	CNN	ResNet-18	
	Acc. & std	Acc. & std	Acc. & std	Acc. & std	
FedAsync	62.29 ± 0.16	79.8 ± 2.28	-	40.58 ± 2.92	
FedBuff	60.74 ± 1.18	78.53 ± 3.31	53.96 ± 0.10	63.03 ± 3.17	
$CA^{2}FL$	64.40 ± 0.32	$\textbf{83.79} \pm 0.34$	57.62 ± 0.42	68.37 ± 1.97	

Method	MRPC	SST-2	RTE	CoLA	
	Acc. & std.	Acc. & std.	Acc. & std.	Acc. & std.	
FedAsync	82.86 ± 0.42	87.32 ± 3.76	62.09 ± 0.76	54.53 ± 1.52	
FedBuff	78.68 ± 0.41	86.06 ± 3.86	60.07 ± 1.09	55.57 ± 0.94	
$CA^{2}FL$	79.26 ± 0.12	$\textbf{90.76} \pm 1.02$	$\textbf{65.63} \pm 0.35$	56.10 ± 0.25	

Experiments

		Acc.	FedAsync	FedBuff	$CA^{2}FL$	FedAvg
	CIFAR-10	80%	268.80	291.53	<u>214.16</u>	388.64
	CIFAR-100	55%	333.47	295.49	<u>233.49</u>	476.78
	MRPC	80%	2549.54	403.95	<u>87.39</u>	97.71
	SST-2	90%	2853.5	2079.35	<u>648.71</u>	572.01
Matthew's correlation	RTE	63%	815.94	420.83	79.61	95.17
for CoLA	CoLA	55%	217.23	144.64	<u>34.75</u>	0.79

The proposed CA²FL shows advantage in training efficiency

Thank You

.