Carnegie Mellon University

Learning from Sparse Offline Datasets via Conservative Density Estimation

Zhepeng Cen¹, Zuxin Liu¹, Zitong Wang¹, Yihang Yao¹, Henry Lam¹, Ding Zhao¹

¹CMU, ²Columbia University

Learning from Sparse Offline Datasets via Conservative Density Estimation

• TL;DR: We propose a new offline reinforcement learning (RL) method to improve the performances in sparse reward and scarce data settings.

- Offline RL:
 - Learn a policy from fixed dataset
 - Without further interaction with Environment

Carnegie Mellon

University

Background

• Challenges of offline RL in terms of **data**

• Sparse reward setting

(e.g., reward > 0 only when reaching the goal)

→ It makes it hard to tell whether a policy is good or not, especially with Bellman-style value learning

• Scarce data setting

 \rightarrow The coverage of offline data on state-action space is not enough

→ The out-of-distribution (OOD) issue is more severe

dense reward

Carnegie Mellon

University

sparse reward

Method - Conservative Density Estimation

- We formulate the optimization problem in terms of stationary distribution $d^{\pi}(s, a)$
 - Based on Distribution Correction Estimation (DICE)
 - Additional constraint: be conservative on OOD region
 - Mitigate the support mismatch issue

$$\max_{d^{\pi} \ge 0} \mathbb{E}_{d^{\pi}}[r(s,a)] - \alpha D_{f}(d^{\pi} || d^{\mathcal{D}}) \qquad \Rightarrow \text{ maximize regularized reward}$$

$$s.t. \sum_{a} d^{\pi}(s,a) = (1 - \gamma)\rho_{0}(s) + \mathcal{T}_{*}d^{\pi}(s), \forall s \qquad \Rightarrow d^{\pi} \text{ should be valid}$$

$$d^{\pi}(s,a) \le \epsilon \mu(s,a), \forall s, a \notin \operatorname{supp}(d^{\mathcal{D}}) \qquad \Rightarrow \text{ be conservative on unseen region}$$

Carnegie Mellon University

Method

- How to solve the above constrained optimization problem?
 - Let $\hat{d}^{D}(s,a) = \zeta d^{D}(s,a) + (1-\zeta)\mu(s,a)$, $w(s,a) = \frac{d^{\pi}(s,a)}{\hat{d}^{D}(s,a)}$
 - $\rightarrow \min_{\lambda \ge 0, v} \max_{w} \mathcal{L}(w; v, \lambda)$
- Nice properties for solving this min-max problem.
 - Inner max problem has a closed-form solution:

 $w^*(s, a) = (f')^{-1} (\tilde{A}(s, a)/\alpha), \tilde{A}$ can be represented by v, λ

- Outer min problem: $\min_{\lambda \ge 0, v} \mathcal{L}(w^*; v, \lambda)$ is a convex optimization
- Mitigate the value estimation error compared to Bellman update

Method

- The training pipeline of our method CDE:
 - Policy evaluation: solve the optimal (w^*, v^*, λ^*) from the minimax problem
 - Policy extraction: $\min_{\theta} D_{KL}[d^{\pi_{\theta}}|w^*\hat{d}^D] \approx \min_{\theta} E\left[-\log w^*(s,a) + D_{KL}[\pi_{\theta}|\pi_D]\right]$

- Theoretical analysis:
 - The importance ratio $w^*(s, a)$ on unseen region is bounded
 - The performance gap to optimal policy is bounded
 - *in terms of (1) the quality of dataset, and (2) the size of dataset*

Carnegie Mellon

University

Experiment – sparse reward setting

• Performances on D4RL sparse-reward tasks

Task	BC	BCQ	CQL	IQL	TD3+BC	Algae- DICE	OptiDICE	CDE
maze2d-umaze	3.8	32.8	5.7	50.0	41.5	-15.7	111.0±8.3	134.1±10.4
maze2d-medium	30.3	20.7	5.0	31.0	76.3	10.0	145.2±17.5	146.1 ±13.1
maze2d-large	5.0	47.8	12.5	58.0	77.8	-0.1	155.7±33.4	210.0 ±13.5
pen-human	63.9	68.9	37.5	71.5	2.0	-3.3	42.1±15.3	72.1 ±15.8
hammer-human	1.2	0.5	4.4	1.4	1.4	0.3	0.3±0.0	1.9±0.7
door-human	2.0	0.0	9.9	4.3	-0.3	0.0	0.1±0.1	7.7±3.3
relocate-human	0.1	-0.1	0.2	0.1	-0.3	-0.1	-0.1±0.1	0.3± 0.1
pen-expert	85.1	114.9	107.0	111.7	79.1	-3.5	80.9±31.4	105.0±12.3
hammer-expert	125.6	107.2	86.7	116.3	3.1	0.3	127.0±3.0	126.3 ±3.4
door-expert	34.9	99.0	101.5	103.8	-0.3	0.0	103.4±2.8	105.9±0.3
relocate-expert	101.3	41.6	95.0	102.7	-1.5	-0.1	99.7±4.2	102.6±1.9

Carnegie Mellon

University

Experiment – scarce data setting

• Test the performances with a small proportion of original dataset

• Sparse-MuJoCo tasks adopt binary sparse rewards:

$$r_{ ext{sparse}}(s_t, a_t) = \mathbf{1} \left(\sum_{ au=0}^t r_ au \geq R
ight)$$

 (s_t, a_t) is in the trajectory $\{s_0, a_0, r_0, s_1, ...\}$

Carnegie Mellon University

Summary

- We propose an offline RL method CDE by applying pessimism from the perspective of stationary distribution.
- Our method shows better performances in sparse reward or scarce data settings.

