Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data

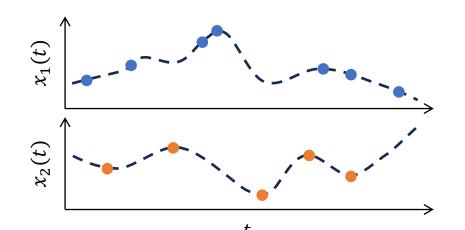
YongKyung Oh^{*}, Dongyoung Lim^{*}, & Sungil Kim⁺ | UNIST, Republic of Korea | {yongkyungoh, dlim, sungil.kim}@unist.ac.kr

TL; DR:

- We propose three stable classes of Neural Stochastic Differential Equations:
 - **Neural LSDE:** Neural Langevin-type SDE

 $dz(t) = \gamma(\bar{z}(t); \theta_t) dt + \sigma(t; \theta_\sigma) dW(t)$ with $z(0) = h(x; \theta_h)$.

Neural LNSDE: Neural Linear Noise SDE


 $dz(t) = \gamma(t, \overline{z}(t); \theta_t) dt + \sigma(t; \theta_\sigma) z(t) dW(t)$ with $z(0) = h(x; \theta_h)$.

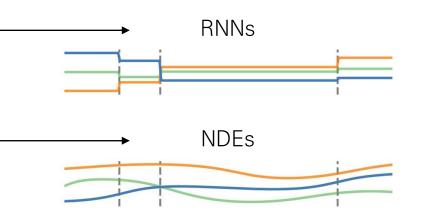
Neural GSDE: Neural Geometric SDE

$$\frac{\mathrm{d}z(t)}{z(t)} = \gamma(t, \bar{z}(t); \theta_t) \mathrm{d}t + \sigma(t; \theta_\sigma) \mathrm{d}W(t) \text{ with } z(0)$$

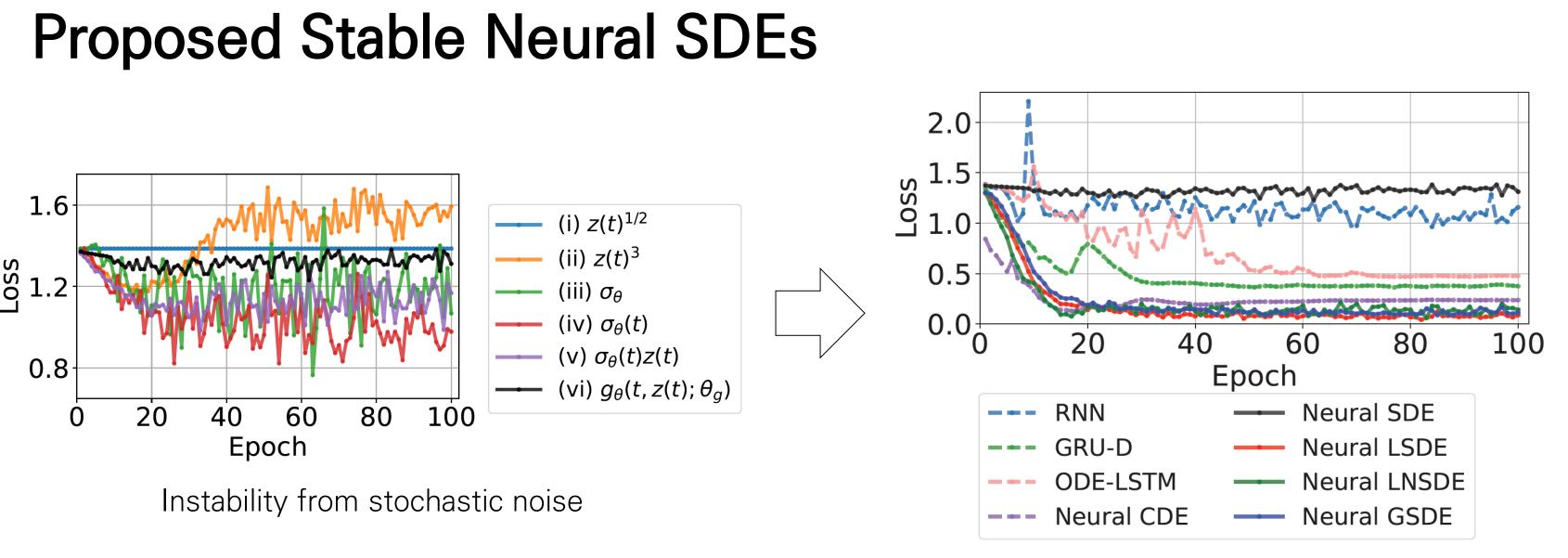
- The proposed Neural SDEs are theoretically well-defined SDEs, with carefully designed drift and diffusion functions. Therefore, the stability of the proposed Neural <u>SDEs, Neural LSDE, Neural LNSDE, and Neural GSDE, is guaranteed.</u>
- Empirically, the proposed methods <u>outperform existing techniques in a variety of</u> tasks including interpolation, forecasting, and classification.

Challenges of "Irregular time series"

Exact solution


Examples of irregular time series

Find solution of differential equations (Train RNNs vs. Solve NDEs)


Variants of Neural Differential Equations.

- Neural ODEs: $z(t) = z(0) + \int_0^t f(s, z(s); \theta_f) ds$
- Neural CDEs: $z(t) = z(0) + \int_0^t f(s, z(s); \theta_f) dX(s)$
- Neural SDEs: $z(t) = z(0) + \int_0^t f(s, z(s); \theta_f) ds + \int_0^t g(s, z(s); \theta_f) dW(s)$

 $=h(x;\theta_h).$

Hidden state trajectories (Discrete vs. Continuous)

Limitations of naïve Neural SDEs.

- Lack of guarantee of the existence and uniqueness of a strong solution.
- Stochastic destabilization, Instability with respect to Euler discretization.

Three classes of Neural SDEs.

• Building upon well-established SDEs, we propose three stable Neural SDEs: Methods

Naïve Neural SDE (Neural SDE) Neural Langevin-type SDE (Neural LSDE) Neural Linear Noise SDE (**Neural LNSDE**) Neural Geometric SDE (**Neural GSDE**)

• We propose $\overline{z}(t)$ that incorporates a controlled path X(t) in the drift term as follows: $\gamma(t, \overline{\mathbf{z}}(t); \theta_{\gamma}) = \gamma(t, \zeta(t, z(t), X(t); \theta_{\zeta}); \theta_{\gamma}),$ where ζ is a neural network with parameter θ_{ζ} .

Key properties

- Existence and Uniqueness: The proposed Neural SDEs have their unique strong solutions.
- **Stochastic stability**^{*}: The stability of the proposed method is theoretically guaranteed.
- Absorbing property of GSDE: When a latent representation value hits zero, it remains zero.

* Stability in Neural Differential Equations ensures that the output distribution changes continuously with respect to input distribution shifts, guaranteeing the model's robust performance even when faced with irregular intervals or missing data.

Impact of our proposed methods

Drift term	Diffusion term
$f(t, z(t); \theta_f)$	$g(t, z(t); \theta_g)$
$\gamma(\overline{\mathbf{z}}(t); \boldsymbol{\theta}_{\gamma})$	$\boldsymbol{\sigma}(\boldsymbol{t}; \boldsymbol{\theta}_{\boldsymbol{\sigma}})$
$\gamma(t, \overline{\mathbf{z}}(t); \boldsymbol{\theta}_{\gamma})$	$\sigma(t; \theta_{\sigma}) z(t)$
$\gamma(t, \overline{\mathbf{z}}(t); \boldsymbol{\theta}_{\gamma}) \mathbf{z}(t)$	$\sigma(t; \theta_{\sigma}) z(t)$

Experiment Results

Interpolation

MSE error versus percent observed time points on PhysioNet Mortality

Forecasting

MSE error performance versus percent observed time points on MuJoCo

Classification

Accuracy and rank on 30 datasets with regular and three missing rates (30%, 50%, and 70%)

Acknowledgement

This work was partly supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant number: HI19C1095), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00253002), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00218913), and the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-0-01336, Artificial Intelligence Graduate School Program (UNIST)).

Methods	Mean Squared Error ($\times 10^{-3}$)						
RNN-VAE L-ODE-RNN L-ODE-ODE mTAND-Full	$13.418 \pm 0.008 \\ 8.132 \pm 0.020 \\ 6.721 \pm 0.109 \\ 4.139 \pm 0.029$	$12.594 \pm 0.004 \\ 8.140 \pm 0.018 \\ 6.816 \pm 0.045 \\ 4.018 \pm 0.048 \\ $	11.887 ± 0.005 8.171 \pm 0.030 6.798 \pm 0.143 4.157 \pm 0.053	11.133 ± 0.007 8.143 \pm 0.025 6.850 \pm 0.066 4.410 \pm 0.149	11.470 ± 0.000 8.402 \pm 0.022 7.142 \pm 0.066 4.798 \pm 0.036		
LatentSDE Neural SDE	8.862 ± 0.036 8.592 ± 0.055	8.864 ± 0.058 8.591 ± 0.052	8.686 ± 0.122 8.540 ± 0.051	8.716 ± 0.032 8.318 ± 0.010	8.435 ± 0.077 8.252 ± 0.023		
Neural LSDE Neural LNSDE Neural GSDE	$\frac{3.799 \pm 0.055}{3.808 \pm 0.078}$ $\frac{3.824 \pm 0.088}{3.824 \pm 0.088}$	3.584 ± 0.055 3.617 ± 0.129 3.667 ± 0.079	$\frac{3.457 \pm 0.078}{3.405 \pm 0.089}$ 3.493 ± 0.024	3.262 ± 0.032 3.269 ± 0.057 3.287 ± 0.070	3.111 ± 0.076 3.154 ± 0.084 3.118 ± 0.065		
Observed %	50%	60%	70%	80%	90%		

Methods		Memory Usage			
	Regular	30% dropped	50% dropped	70% dropped	(MB)
GRU- Δt	0.223 ± 0.020	0.198 ± 0.036	0.193 ± 0.015	0.196 ± 0.028	533
GRU-D	0.578 ± 0.042	0.608 ± 0.032	0.587 ± 0.039	0.579 ± 0.052	569
GRU-ODE	0.856 ± 0.016	0.857 ± 0.015	0.852 ± 0.015	0.861 ± 0.015	146
ODE-RNN	0.328 ± 0.225	0.274 ± 0.213	0.237 ± 0.110	0.267 ± 0.217	115
Latent-ODE	0.029 ± 0.011	0.056 ± 0.001	0.055 ± 0.004	0.058 ± 0.003	314
Augmented-ODE	0.055 ± 0.004	0.056 ± 0.004	0.057 ± 0.005	0.057 ± 0.005	286
ACE-NODE	0.039 ± 0.003	0.053 ± 0.007	0.053 ± 0.005	0.052 ± 0.006	423
NCDE	0.028 ± 0.002	0.027 ± 0.000	0.027 ± 0.001	0.026 ± 0.001	52
ANCDE	0.026 ± 0.001	0.025 ± 0.001	0.025 ± 0.001	0.024 ± 0.001	79
EXIT	0.026 ± 0.000	0.025 ± 0.004	0.026 ± 0.000	0.026 ± 0.001	127
LEAP	0.022 ± 0.002	0.022 ± 0.001	0.022 ± 0.002	0.022 ± 0.001	144
Neural SDE	0.028 ± 0.004	0.029 ± 0.001	0.029 ± 0.001	0.027 ± 0.000	234
Neural LSDE	0.013 ± 0.000	0.014 ± 0.001	0.014 ± 0.000	0.013 ± 0.001	249
Neural LNSDE	$\overline{0.012\pm0.001}$	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.000	273
Neural GSDE	0.013 ± 0.001	0.013 ± 0.001	0.013 ± 0.000	0.014 ± 0.000	306

Methods	Regular datasets		Missing datasets (30%)		Missing datasets (50%)		Missing datasets (70%)	
	Accuracy	Rank	Accuracy	Rank	Accuracy	Rank	Accuracy	Rank
RNN	0.582 (0.064)	13.9	0.513 (0.087)	15.3	0.485 (0.088)	16.6	0.472 (0.072)	15.6
LSTM	0.633 (0.053)	11.2	0.595 (0.060)	12.1	0.567 (0.061)	12.9	0.558 (0.058)	12.5
GRU	0.672 (0.059)	8.3	0.621 (0.063)	10.2	0.610 (0.055)	10.3	0.597 (0.062)	10.3
GRU- Δt	0.641 (0.070)	10.3	0.636 (0.066)	8.9	0.634 (0.056)	8.7	0.618 (0.065)	10.2
GRU-D	0.648 (0.071)	10.3	0.624 (0.075)	10.4	0.611 (0.073)	11.1	0.604 (0.067)	10.8
MTAN	0.648 (0.080)	12.0	0.618 (0.099)	10.7	0.618 (0.091)	10.1	0.607 (0.078)	9.8
MIAM	0.623 (0.048)	11.0	0.603 (0.066)	11.1	0.589 (0.063)	12.2	0.569 (0.056)	12.3
GRU-ODE	0.671 (0.067)	9.8	0.663 (0.064)	9.5	0.666 (0.059)	8.3	0.655 (0.062)	7.8
ODE-RNN	0.658 (0.063)	9.1	0.635 (0.064)	9.3	0.636 (0.067)	8.2	0.630 (0.055)	8.5
ODE-LSTM	0.619 (0.063)	11.4	0.584 (0.064)	12.1	0.561 (0.065)	13.3	0.530 (0.085)	12.9
Neural CDE	0.709 (0.061)	8.2	0.706 (0.073)	6.4	0.696 (0.064)	6.5	0.665 (0.072)	7.6
Neural RDE	0.607 (0.071)	13.9	0.514 (0.064)	14.9	0.468 (0.068)	15.2	0.415 (0.077)	16.3
ANCDE	0.693 (0.067)	7.8	0.687 (0.068)	7.2	0.683 (0.078)	6.9	0.655 (0.067)	7.1
EXIT	0.636 (0.073)	11.1	0.633 (0.078)	10.2	0.616 (0.075)	10.6	0.599 (0.075)	11.1
LEAP	0.444 (0.068)	15.2	0.401 (0.078)	16.3	0.425 (0.073)	14.9	0.414 (0.070)	14.7
Latent SDE	0.456 (0.073)	16.6	0.455 (0.073)	15.4	0.455 (0.069)	15.0	0.446 (0.066)	15.1
Neural SDE	0.526 (0.068)	13.4	0.508 (0.066)	13.1	0.517 (0.058)	13.2	0.512 (0.066)	12.9
Neural LSDE	0.717 (0.056)	5.6	0.690 (0.050)	6.4	0.686 (0.051)	6.1	0.682 (0.067)	5.2
Neural LNSDE	0.727 (0.047)	5.4	0.723 (0.050)	5.0	0.717 (0.054)	4.3	0.703 (0.054)	$\frac{5.2}{4.2}$
Neural GSDE	0.716 (0.065)	5.7	0.707 (0.069)	5.3	0.698 (0.063)	6.1	0.689 (0.056)	5.3

