



# WEAKLY-SUPERVISED AUDIO SEPARATION VIA BIMODAL SEMANTIC SIMILARITY (ICLR 2024)

### Tanvir Mahmud<sup>\*1†</sup>, Saeed Amizadeh<sup>†2</sup>, Kazuhito Koishida<sup>2</sup>, and Diana Marculescu<sup>1</sup>

<sup>1</sup>University of Texas at Austin, <sup>2</sup>Microsoft, <sup>†</sup>Equal Contribution

\*Work done in part during an internship at Microsoft Corporation, Redmond, USA



### **Overview**

- Challenges of sound separation in mixtures
- Limitations of prior works
- Introduction to proposed hypothesis
- Proposed methodology:
  - Language-conditioned Unsupervised Sound Separation
  - Hierarchical Reconstruction Loss

#### Experiments:

- Datasets
- Experimental Setup
- Ablation Study

#### Conclusion

Future Study

# **Challenges of sound separation in mixtures**

#### Environmental sounds comes in natural mixtures

- Example 1:
  - Caption: A man talking while wood clanks on a metal pan followed by gravel crunching as
    food and oil sizzle

#### • Example 2:

- Caption: An adult female speaks and several people laugh, while slight rustling occurs in the
- background
- It is not always feasible to gather clean-paired sounds of each source for training
- However, captions can represent the complex sounding events
- Is it possible to incorporate captions in order to use large-scale natural mixtures for training?

### **Training Data and Configurations**

#### Supervised Single-Source:

• Single-source clean data is available for each source

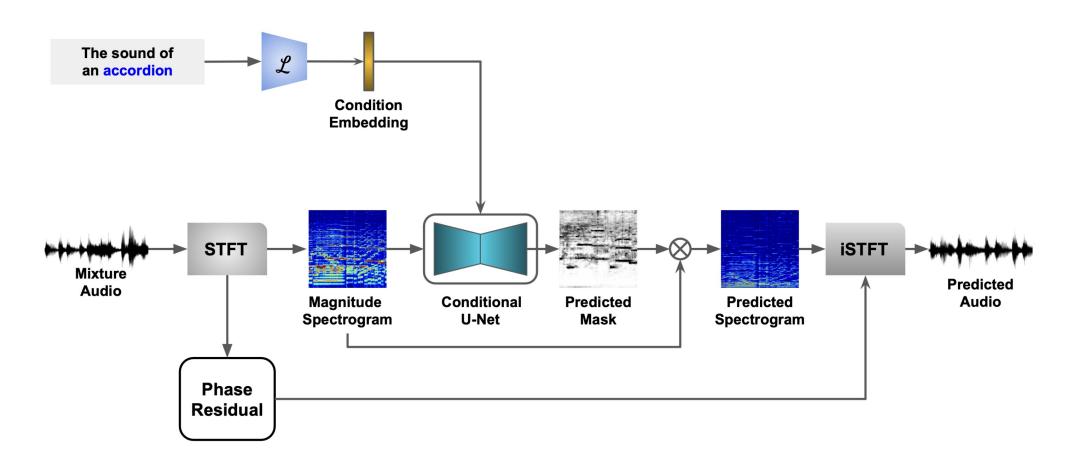
#### Unsupervised Multi-Source:

- No single source clean data is available
- Every sample represents mixture of numer of single source sounds
- A representative caption can be available

#### Semi-supervised:

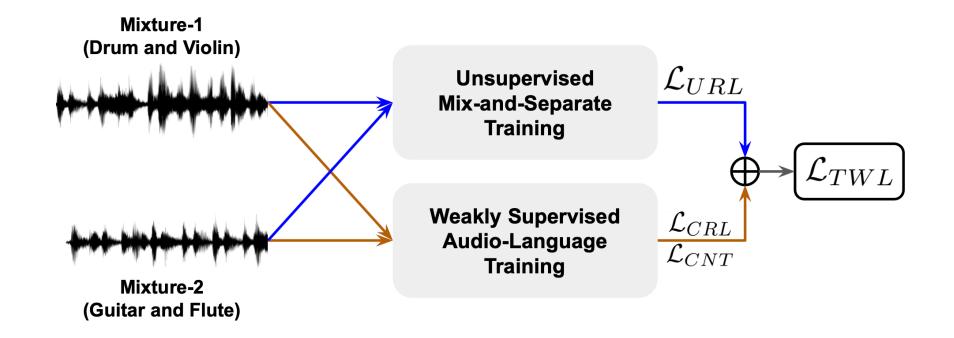
- Small to large fraction of single source sound is available
- Multi-source mixture only data are available with representative captions

### **Inference Pipeline**

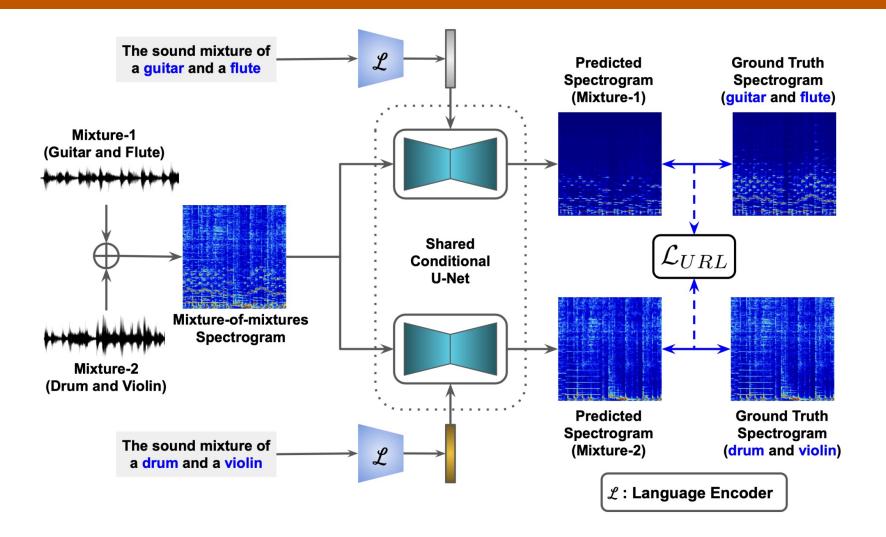


How to get the supervision on single-source separation predictions, when only mixture audio is available for training?

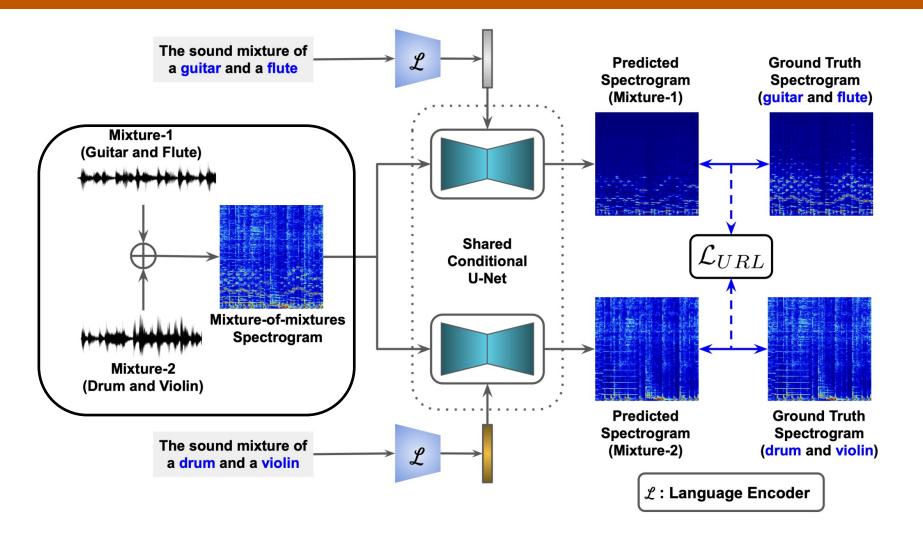
### **Proposed Framework**



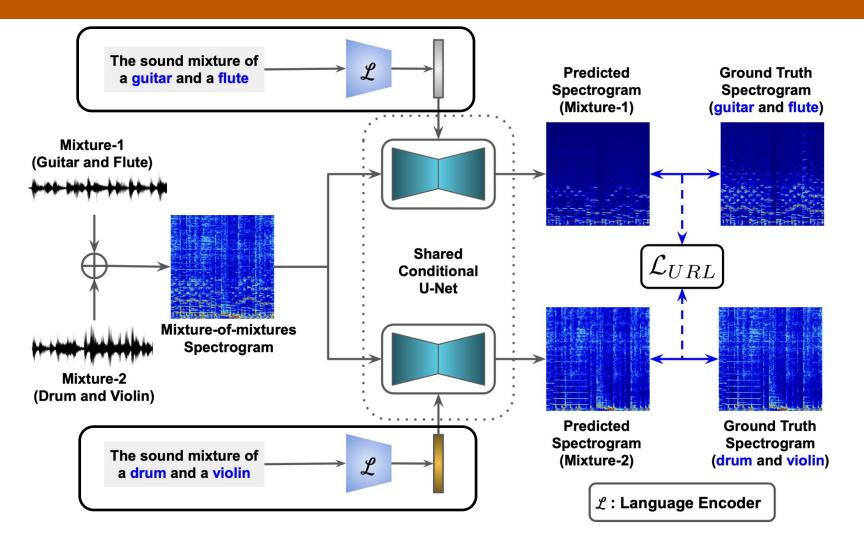
We propose an weakly supervised audio-language training method, to overcome limitations of multi-source natural mixtures



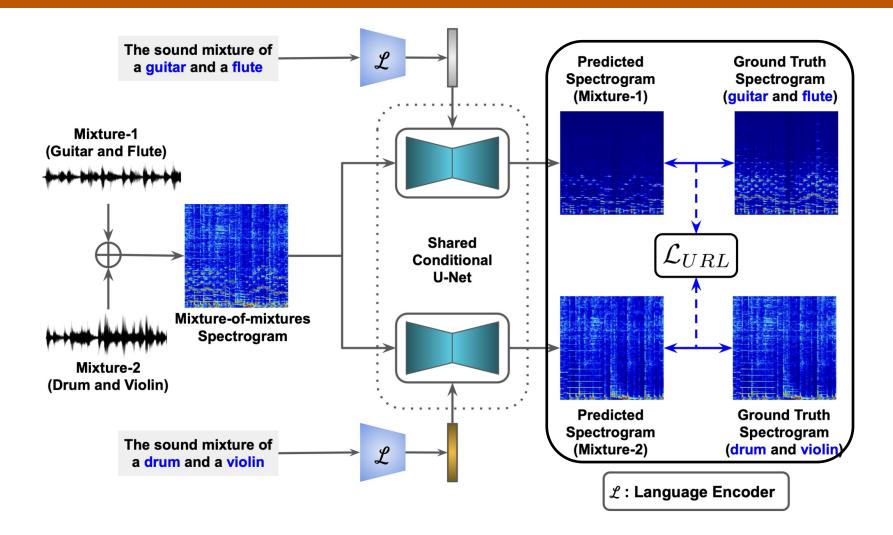
CLIPSep (ICLR'22), CCoL(CVPR'21), CoSep(ICCV'19), SOP(ECCV'18)



CLIPSep (ICLR'23), CCoL(CVPR'21), CoSep(ICCV'19), SOP(ECCV'18)



CLIPSep (ICLR'23), CCoL(CVPR'21), CoSep(ICCV'19), SOP(ECCV'18)



CLIPSep (ICLR'23), CCoL(CVPR'21), CoSep(ICCV'19), SOP(ECCV'18)

# **Limitations of prior works**

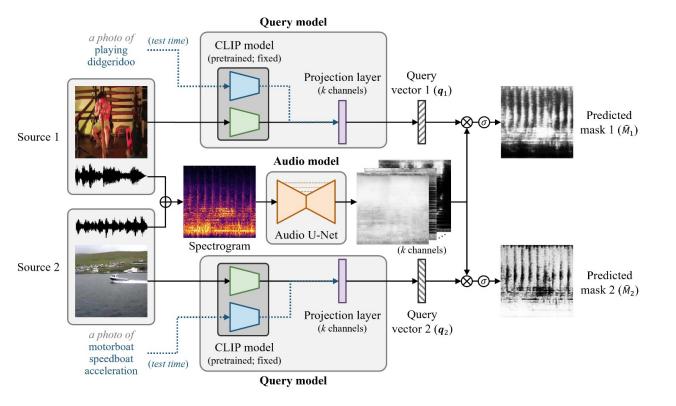
#### Unconditional Mix-and-Separate

- It's the primary baseline for unsupervised sound separation
- The method works well if we consider <u>mixtures as a single sounding source</u>
- With increasing the number of sounding sources in the mixtures, the method's performance significantly drops
  - The training objective becomes more challenging to discover clean sounds from complex mixtures

#### Vision-Conditional Sound Separation

- Conditioning with videos suffer another challenge of computational complexity and extracting sounding sources
  - Sounds may appear from non-visible sources

# Related Works (CLIPSep, ICLR-2023)



A mix-and-separate framework

### Key contribution:

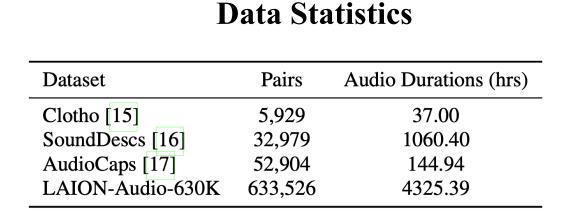
- Modality inversion of conditioning
- Directly source video can be used for training without captions
- Test scenarios can be either from visual or text conditions

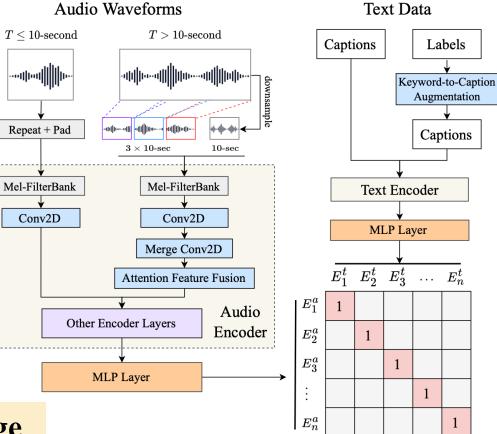
### Limitations:

- Limited to single source data
- Multi-source videos can have silent sources, background objects, etc.
- Performance drops largely on multisource only training

Dong, H. W., Takahashi, N., Mitsufuji, Y., McAuley, J., & Berg-Kirkpatrick, T. (2022, September). CLIPSep: Learning Text-queried Sound Separation with Noisy Unlabeled Videos. In *The Eleventh International Conference on Learning Representations*.

### Related Works: CLAP (ICASSP '23)





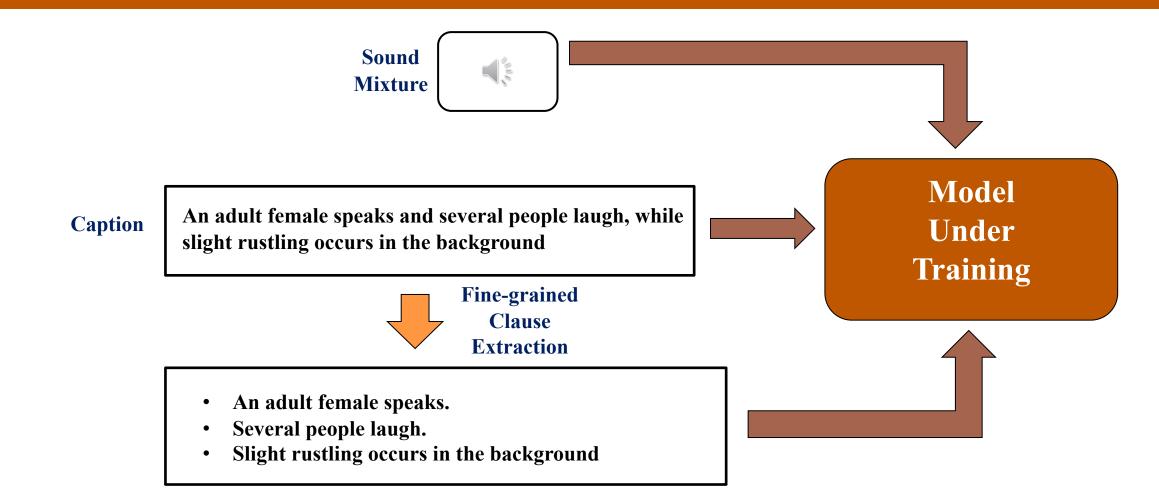
#### **Grounds Audios and representative Language captions through large-scale pretraining**

### An Idea

Text can represent fine-grained details of the audio mixtures

Is it possible to extract fine-grained details of sounding sources from text, and improve unsupervised sound separation from natural mixtures?

# The Main Hypothesis

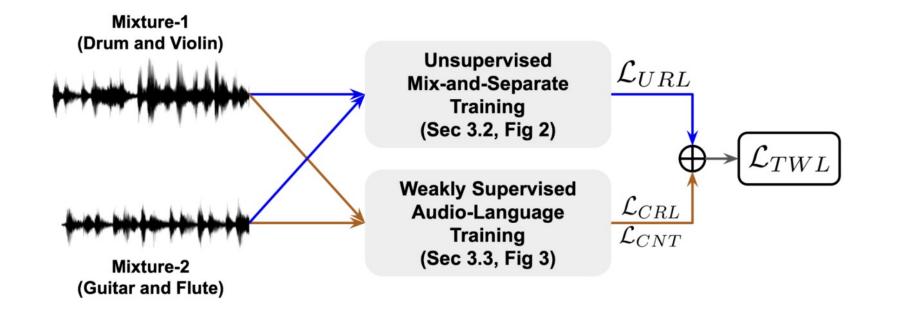


In the absence of clean training audio data, can we use fine-grained semantic text-clauses of different sound sources as a form of supervision to train a conditional sound separation model?

### **Problem Statement**

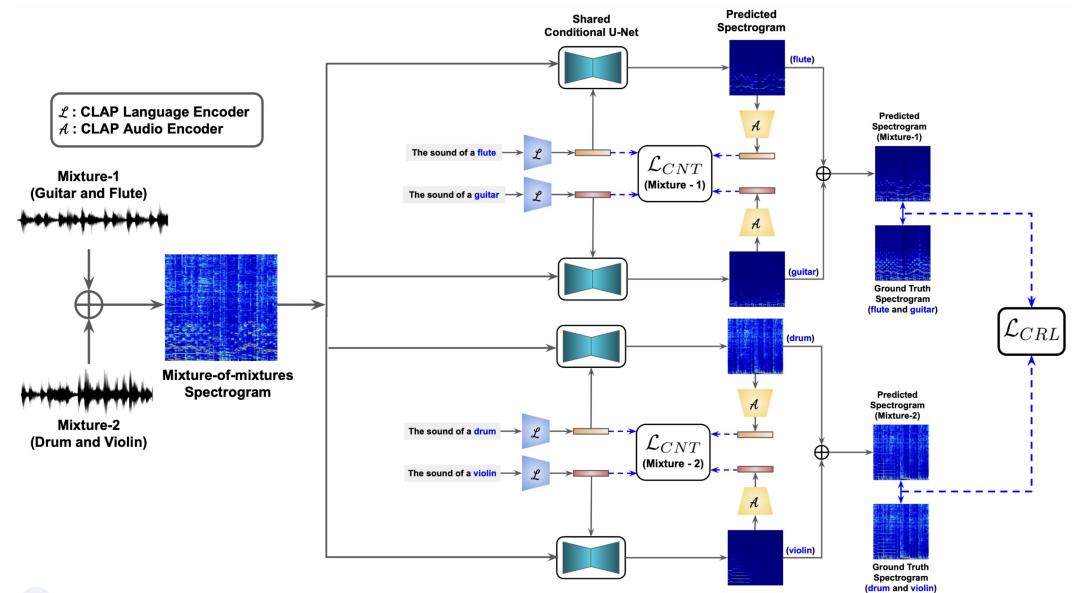
### How to leverage natural language caption of a sound mixture, to train a conditional sound separation, without having access to singlesource audio data during training?

### **Proposed Framework**

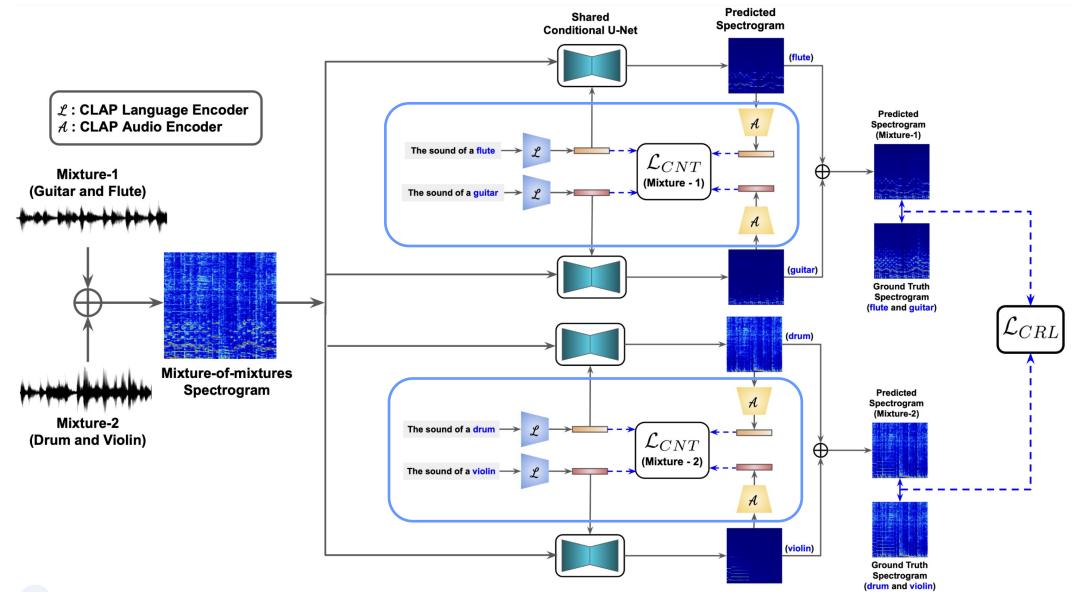


We propose an weakly supervised audio-language training method, to overcome limitations of multi-source natural mixtures

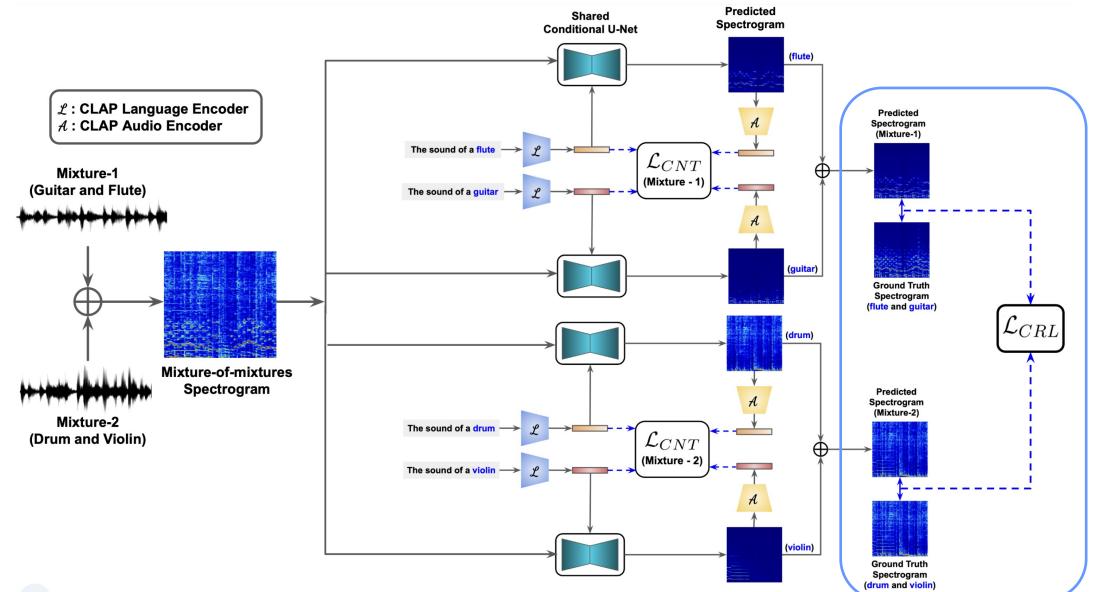
# **Proposed Weakly Supervised Audio-Language Training**



# **Proposed Weakly Supervised Audio-Language Training**



# **Proposed Weakly Supervised Audio-Language Training**

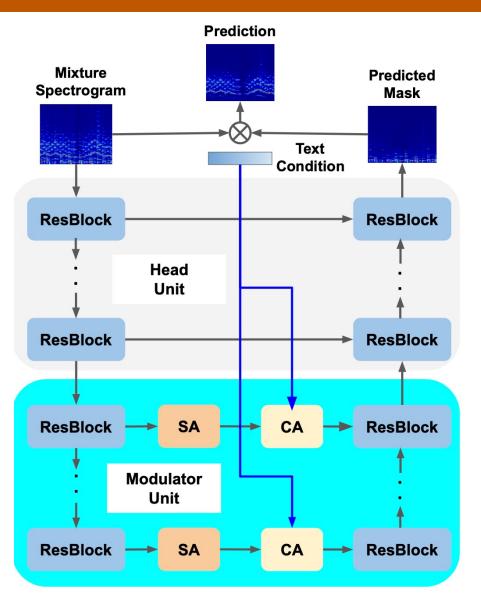


### **Proposed Semi-Supervised Learning**

- Combines learning with supervised (clean sounds) and unsupervised (mixture sounds)
- Only mix-and-separate is used for clean sound learning
- Proposed framework is used for learning on mixtures:
  - Combining mix-and-separate with proposed weakly supervised method

$$\mathcal{L}_{SSL}(\mathcal{B}' \cup \mathcal{S}', \theta) = \lambda_s \cdot \mathcal{L}_{URL}(\mathcal{S}', \theta) + \lambda_u \cdot \mathcal{L}_{TWL}(\mathcal{B}', \theta)$$

# **Modifications of Conditional U-Net Architecture**



- Prior works rely on unconditional U-Net architecture with lateconditioning
- Shallow architecture is used in general
- For focusing on supervised learning with clean sounds, shallow network performed well
- We modify the architecture for enhanced feature extraction with deeper conditioning

### **Experimental Dataset**

#### MUSIC Dataset (Used for Synthetic Mixtures Training):

- Contains 823 audios of single sources
- Contains 17 classes of sounds
- Each video contains 1~4 minutes of sounds

#### VGGSound Dataset (Used for Synthetic Mixtures Training):

- Contains nearly 180k videos of 10s duration
- Contains 309 classes

#### AudioCaps Dataset (Used for Natural Mixtures Training) :

- Contains ~50k audios of 10s duration
- Contains natural captions
- Diverse sounding sources with variable number of sources

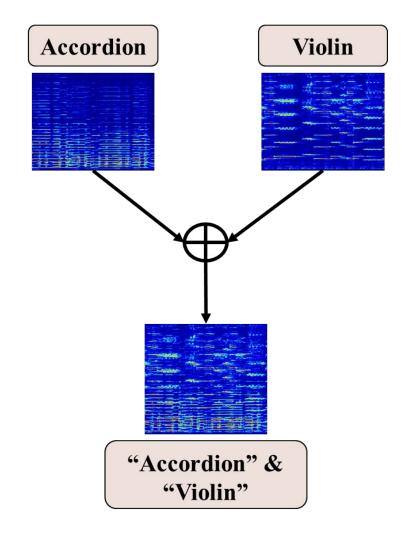
# **Experimental Setups (Synthetic Training and Eval)**

#### Synthetic Training:

- Every Training Mixture contains **2** sounds
- Every Training Mixture contains **3** sounds
- Every Training Mixture contains **4** sounds

### Synthetic Testing:

- Every Test Mixture contains 2 sounds
- Every Test Mixture contains **3** sounds
- Every Test Mixture contains **4** sounds
- Synthetic Training demonstrates the real-scenario of complex environmental mixtures with increasing complexity
- Carried out with MUSIC and VggSound datasets



# **Experimental Setups (Real-world Training and Eval)**

#### Training:

- Contains the available environmental mixtures of sounds
- 1~6 for AudioCaps

#### Synthetic Testing:

- Every Test Mixture contains 2 mixture of sounds
- Evaluation is carried on each mixture
- Synthetic Training demonstrates the realscenario of complex environmental mixtures with increasing complexity
- Carried out with large-scale AudioCaps dataset



### **Caption:**

An adult female speaks and several people laugh, while slight rustling occurs in the background

### **Evaluation Metrics**

#### SDR (Source-to-Distortion Ratio):

- SDR is usually considered to be an overall measure of how good a source sounds
- If a paper only reports one number for estimated quality, it is usually SDR

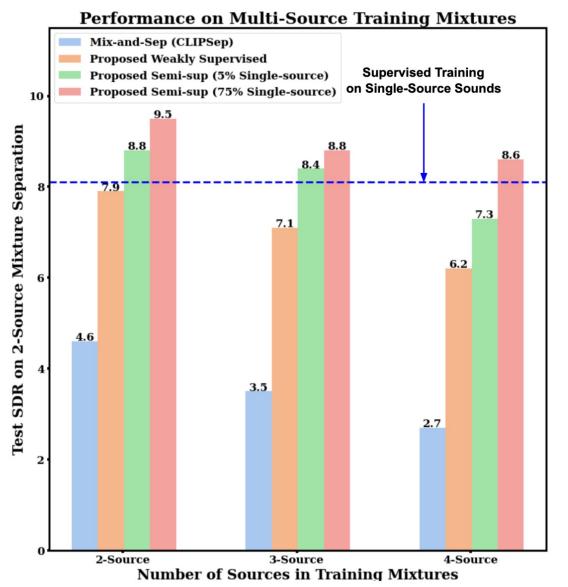
#### SIR (Source-to-Interference Ratio):

- This is usually interpreted as the number of other sources that can be heard in a source estimate
- This is most close to the concept of "bleed", or "leakage"

#### SAR (Source-to-Artifact Ratio):

This is usually interpreted as the amount of unwanted artifacts a source estimate has with relation to the true source.

# **Performance on Higher Order Mixture Training**



- Mix-and-Separate significantly loses performance on higher mixtures
- Proposed framework largely recovers performance loss on higher mixtures
- Learning with 5% clean sounds surpass the supervised training with 100% clean sounds in Mixand-Separate
- This experiment is conducted on MUSIC dataset

### **Quantitative Results**

Table 1: Comparison on MUSIC Dataset under the unsupervised setup. The supervised column is also provided as an upperbound. SDR on 2-Source separation test set is reported for all cases. All methods are reproduced under the same setting. \* denotes implementation with our improved U-Net model. **Bold** and blue represents the best and second best performance in each group, respectively.

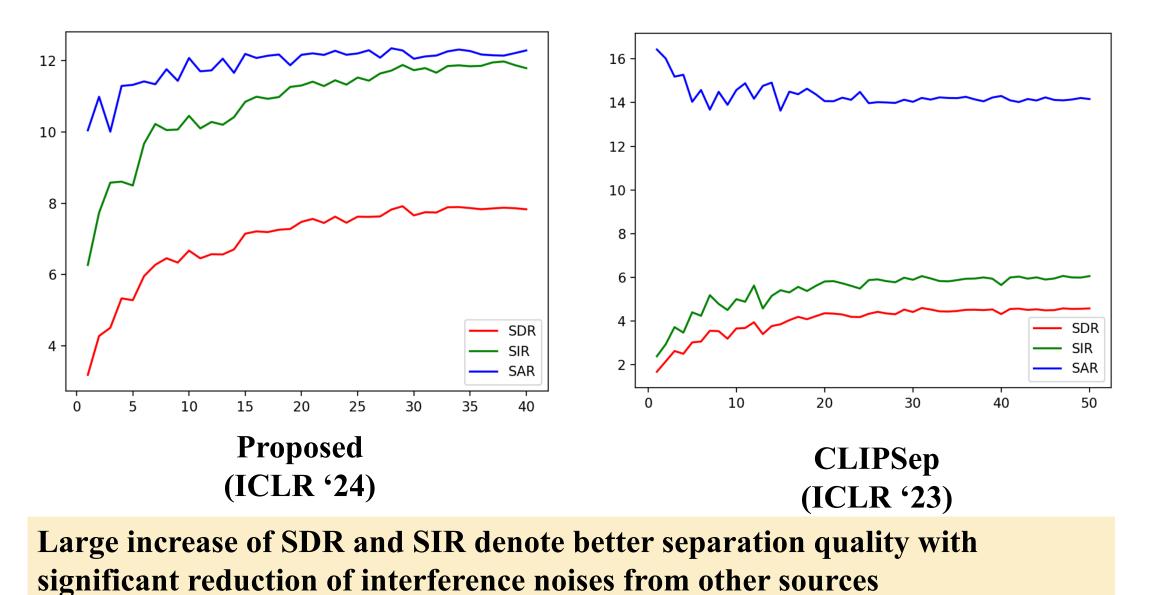
| Method                                                | Single-Source  | Multi-Source (Unsupervised) |                         |                         |
|-------------------------------------------------------|----------------|-----------------------------|-------------------------|-------------------------|
|                                                       | (Supervised)   | 2-Source                    | 3-Source                | 4-Source                |
| Unconditional                                         |                |                             |                         |                         |
| PIT* (Yu et al., 2017)                                | $8.0 \pm 0.26$ | -                           | -                       | -                       |
| MixIT (Wisdom et al., 2020)                           | -              | $3.2\pm0.34$                | $2.3 \pm 0.57$          | $1.4 \pm 0.35$          |
| MixPIT (Karamatlı & Kırbız, 2022)                     | -              | $3.6 \pm 0.46$              | $2.1 \pm 0.41$          | $1.7\pm0.35$            |
| Image Conditional                                     |                |                             |                         |                         |
| CLIPSep-Img (Dong et al., 2022)                       | $6.8 \pm 0.25$ | $3.8 \pm 0.27$              | $2.9 \pm 0.35$          | $2.1 \pm 0.32$          |
| CLIPSep-Img* (Dong et al., 2022)                      | $7.4 \pm 0.22$ | $\textbf{4.6} \pm 0.31$     | $3.8 \pm 0.28$          | $2.9 \pm 0.43$          |
| CoSep* (Gao & Grauman, 2019)                          | $7.9 \pm 0.28$ | $4.9 \pm 0.37$              | $4.0 \pm 0.29$          | $3.1\pm$ 0.36           |
| SOP* (Zhao et al., 2018)                              | $6.5\pm0.23$   | $4.1 \pm 0.41$              | $3.5\pm 0.26$           | $2.7\pm 0.42$           |
| Language Conditional                                  |                |                             |                         |                         |
| CLIPSep-Text (Dong et al., 2022)                      | $7.7 \pm 0.21$ | $4.6 \pm 0.35$              | $3.5 \pm 0.27$          | $2.7\pm$ 0.45           |
| CLIPSep-Text* (Dong et al., 2022)                     | $8.3 \pm 0.27$ | $5.4 \pm 0.41$              | $4.7 \pm 0.32$          | $3.8 \pm 0.28$          |
| BertSep*                                              | $7.9 \pm 0.27$ | $5.3 \pm 0.31$              | $4.0 \pm 0.22$          | $3.1 \pm 0.27$          |
| CLAPSep*                                              | $8.1 \pm 0.31$ | $5.5 \pm 0.36$              | $4.3 \pm 0.28$          | $3.5 \pm 0.33$          |
| LASS-Net (Liu et al., 2022)                           | $7.8 \pm 0.25$ | $5.2 \pm 0.26$              | $4.2 \pm 0.29$          | $3.6 \pm 0.36$          |
| Weak-Sup (Pishdadian et al., 2020)                    | -              | $3.1 \pm 0.47$              | $2.2\pm 0.38$           | $1.9 \pm 0.33$          |
| Proposed (w/ Timbre Classifier - concurrent training) | -              | $5.0 \pm 0.29$              | $4.5 \pm 0.32$          | $3.5 \pm 0.27$          |
| Proposed (w/ Timbre Classifier - pretrained)          | -              | $6.1 \pm 0.33$              | $\textbf{5.2} \pm 0.37$ | $4.1 \pm 0.35$          |
| Proposed (w/ Bi-modal CLAP)                           | -              | $\textbf{7.9} \pm 0.35$     | $\textbf{7.1} \pm 0.42$ | $\textbf{6.2} \pm 0.38$ |

### **Quantitative Results**

Table 2: Comparisons of the proposed semi-supervised learning with different portions of single-source and multi-source subsets. **Bold** and **blue** represents the best and second best performance.

| Training        | Test Set       | Single-source Data |          | Multi-source Mixture Data |          |         | Performance             |
|-----------------|----------------|--------------------|----------|---------------------------|----------|---------|-------------------------|
| Method          | Mixture        | Dataset            | Fraction | Dataset                   | Fraction | #Source | (SDR)                   |
| Supervised      | MUSIC-2Mix     | MUSIC              | 100%     | -                         | -        | -       | $8.1 \pm 0.31$          |
| Supervised      | MUSIC-2Mix     | MUSIC              | 5%       | -                         | -        | -       | $2.6 \pm 0.33$          |
| Unsupervised    | MUSIC-2Mix     | -                  | -        | MUSIC                     | 100%     | 2       | $7.9 \pm 0.35$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 5%       | MUSIC                     | 95%      | 2       | $8.8 \pm 0.28$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 5%       | MUSIC                     | 95%      | 3       | $8.2 \pm 0.22$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 5%       | MUSIC                     | 95%      | 4       | $7.4 \pm 0.31$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 10%      | MUSIC                     | 90%      | 2       | $8.9 \pm 0.26$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 25%      | MUSIC                     | 75%      | 2       | $9.2 \pm 0.24$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 75%      | MUSIC                     | 25%      | 2       | $9.5 \pm 0.29$          |
| Semi-Supervised | MUSIC-2Mix     | MUSIC              | 100%     | VGGSound                  | 100%     | 2       | $\textbf{9.9} \pm 0.35$ |
| Semi-Supervised | MUSIC-2Mix     | VGGSound           | 100%     | MUSIC                     | 100%     | 2       | $9.7 \pm 0.35$          |
| Semi-Supervised | MUSIC-2Mix     | VGGSound           | 100%     | MUSIC                     | 100%     | 3       | $9.2 \pm 0.31$          |
| Semi-Supervised | MUSIC-2Mix     | VGGSound           | 100%     | MUSIC                     | 100%     | 4       | $8.9 \pm 0.42$          |
| Supervised      | VGGSound-2Mix  | VGGSound           | 100%     | -                         | -        | -       | $2.3 \pm 0.23$          |
| Supervised      | VGGSound-2Mix  | VGGSound           | 5%       | -                         | -        | -       | $0.4\pm 0.35$           |
| Unsupervised    | VGGSound-2Mix  | -                  | -        | VGGSound                  | 100%     | 2       | $2.2 \pm 0.29$          |
| Semi-Supervised | VGGSound-2Mix  | VGGSound           | 5%       | VGGSound                  | 95%      | 2       | $\textbf{3.1} \pm 0.31$ |
| Semi-Supervised | VGGSound-2Mix  | VGGSound           | 75%      | VGGSound                  | 25%      | 2       | $\textbf{3.4} \pm 0.26$ |
| Unsupervised    | AudioCaps-2Mix | -                  | -        | AudioCaps                 | 100%     | 1~6     | $\textbf{2.9} \pm 0.23$ |
| Semi-Supervised | AudioCaps-2Mix | VGGSound           | 100%     | AudioCaps                 | 100%     | 1~6     | $\textbf{4.3} \pm 0.34$ |

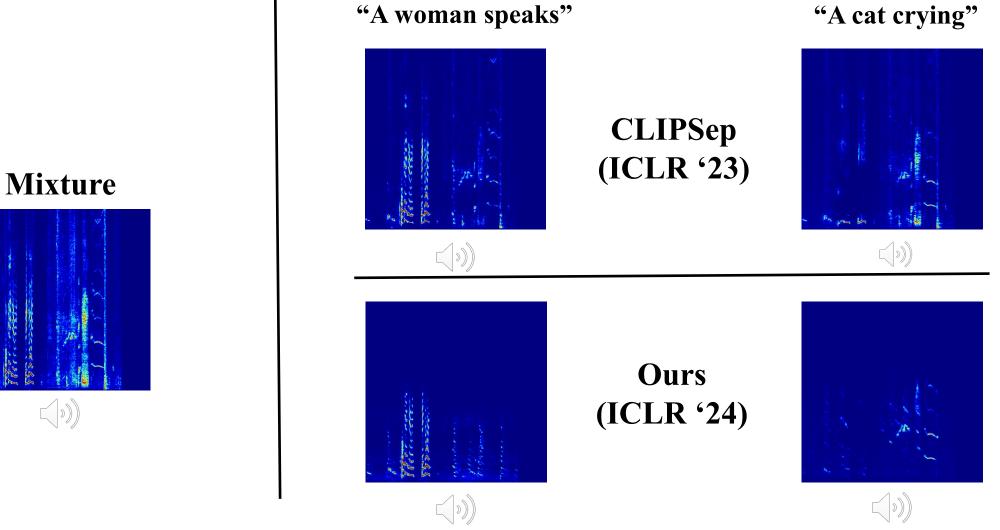
### **Test Metric Plot Over training Iterations**



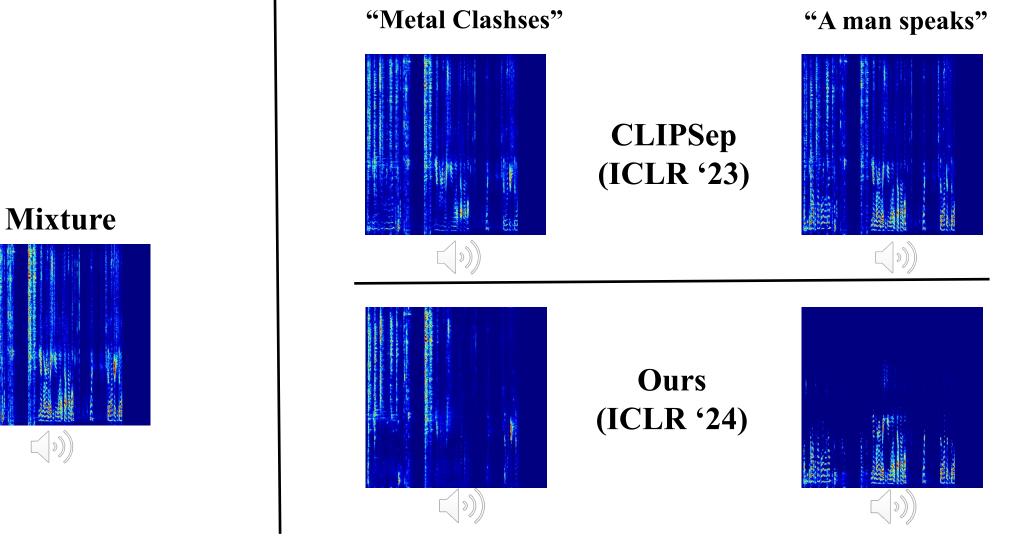
EnyAC © 2024

30

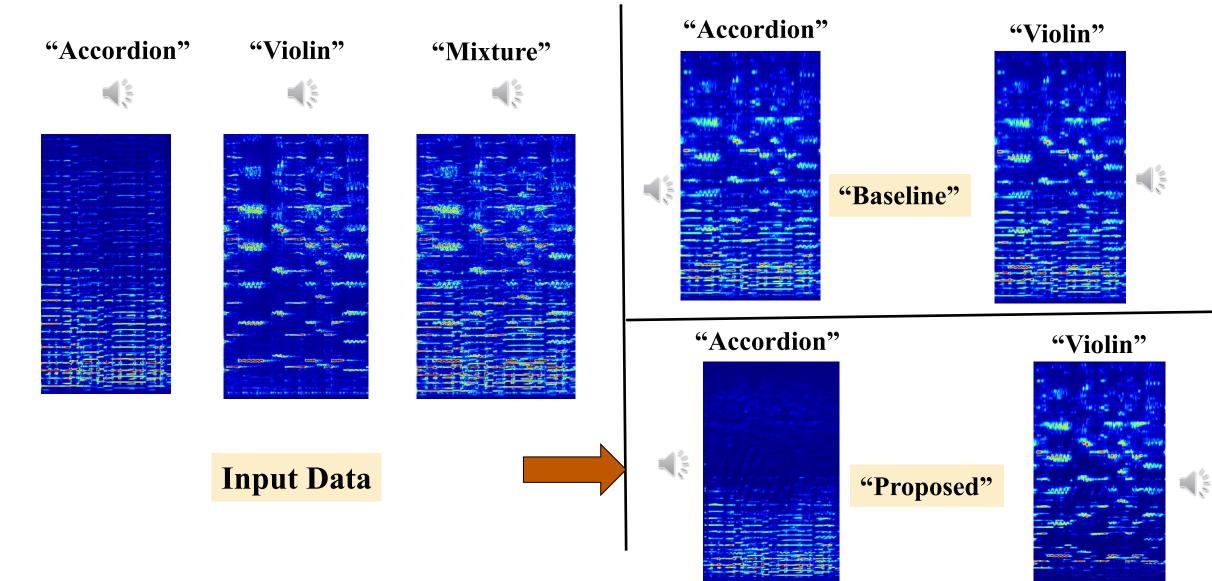
### **Qualitative Results (Natural Mixtures)**



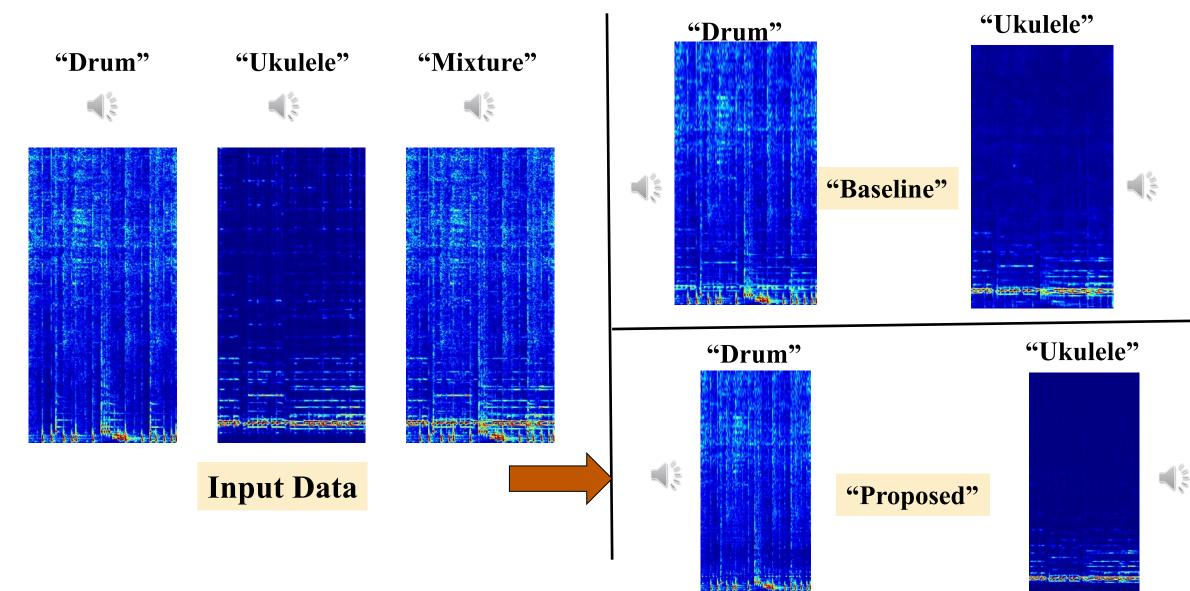
### **Qualitative Results (Natural Mixtures)**



# **Qualitative Results (Synthetic Mixtures)**



# **Qualitative Results (Synthetic Mixtures)**



Project Discussion - 11 April 2024

### **Future Works**

#### Unconditional source separation

- With no external text inputs
- With new unseen audio classes

#### Joint editing and audio generation

- Leverage generative models for joint audio generation and editing
- Training-free/with minimal training

#### Multi-modal fine-grained conditioning with videos in natural mixtures

Automatic separation of sounds from videos





Thank you! Questions

