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Challenges of sound separation in mixtures

®" Environmental sounds comes in natural mixtures
¢ Example 1:

e Caption: A man talking while wood clanks on a metal pan followed by gravel crunching as
. - food and oil sizzle

¢ Example 2:

e Caption: An adult female speaks and several people laugh, while slight rustling occurs in the
- background

" |t is not always feasible to gather clean-paired sounds of each source for training
" However, captions can represent the complex sounding events

" |s it possible to incorporate captions in order to use large-scale natural mixtures
for training?
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Training Data and Configurations

" Supervised Single-Source:
¢ Single-source clean data is available for each source

" Unsupervised Multi-Source:
¢ No single source clean data is available
¢ Every sample represents mixture of numer of single source sounds
¢ A representative caption can be available
" Semi-supervised:
¢ Small to large fraction of single source sound is available
¢ Multi-source mixture only data are available with representative captions
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Inference Pipeline
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How to get the supervision on single-source separation predictions, when only
mixture audio is available for training?
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Proposed Framework

Mixture-1
(Drum and Violin)

Unsupervised LURL
Mix-and-Separate
Training
LTWL]
Weakly Supervised Long
Audio-Language 7
Training CNT

Mixture-2
(Guitar and Flute)

We propose an weakly supervised audio-language training method, to overcome
limitations of multi-source natural mixtures
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Baseline: Unsupervised Mix-and-Separate Framework
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Limitations of prior works

" Unconditional Mix-and-Separate
¢ It’s the primary baseline for unsupervised sound separation
¢ The method works well if we consider mixtures as a single sounding source

¢ With increasing the number of sounding sources in the mixtures, the
method’s performance significantly drops

e The training objective becomes more challenging to discover clean sounds
from complex mixtures

" Vision-Conditional Sound Separation

¢ Conditioning with videos suffer another challenge of computational
complexity and extracting sounding sources

e Sounds may appear from non-visible sources
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Related Works (CLIPSep, ICLR-2023)

" A mix-and-separate framework

Query model
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“paoedl esime) (* CLIP model | " Key contribution:
didgeridoo :

(pretrained; fixed)

Projection layer Query
(k channels) vector 1 (q,)

¢ Modality inversion of conditioning

>
>

W\

| k1) ¢ Directly source video can be used for
training without captions

Source 1

¢ Test scenarios can be either from
visual or text conditions

Ul oeaws ™ Limitations:

Source 2
EFEME meck2 (%) . .
- .D B S —— ¢ Limited to single source data
a photo of (k channels) vector 2 (qz)
H;fldgf [ ¢ Multi-source videos can have silent
accelamaion T time) - (prefrained; fixe / .
o Query model sources, background objects, etc.

¢ Performance drops largely on multi-
source only training

Dong, H. W., Takahashi, N., Mitsufuji, Y., McAuley, J., & Berg-Kirkpatrick, T. (2022, September). CLIPSep: Learning Text-queried Sound Separation
with Noisy Unlabeled Videos. In The Eleventh International Conference on Learning Representations.
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Related Works: CLAP (ICASSP ‘23)
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An ldea

" Text can represent fine-grained details of the audio mixtures

Is it possible to extract fine-grained details of sounding sources from text, and
improve unsupervised sound separation from natural mixtures?
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The Main Hypothesis

Sound
Mixture w

An adult female speaks and several people laugh, while
slight rustling occurs in the background

Fine-grained
@ Clause
Extraction

* An adult female speaks.
* Several people laugh.
e Slight rustling occurs in the background

Caption

Model
Under
Training

In the absence of clean training audio data, can we use fine-grained
semantic text-clauses of different sound sources as a form of supervision

to train a conditional sound separation model?

EnyAC © 2024
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Problem Statement

How to leverage natural language caption of a sound mixture, to
train a conditional sound separation, without having access to single-
source audio data during training?

EnyAC © 2024 Project Discussion — 11 April 2024 16



Proposed Framework

Mixture-1

(Drum and Violin)
Unsupervised

Mix-and-Separate LURL
Training
(Sec 3.2, Fig 2)

ETWL]
Weakly Supervised
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Training LoNT

(Sec 3.3, Fig 3)

Mixture-2
(Guitar and Flute)

We propose an weakly supervised audio-language training method, to overcome
limitations of multi-source natural mixtures
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Proposed Weakly Supervised Audio-Language Training
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A : CLAP Audio Encoder
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Proposed Weakly Supervised Audio-Language Training
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Proposed Weakly Supervised Audio-Language Training
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Proposed Semi-Supervised Learning

" Combines learning with supervised (clean sounds) and unsupervised (mixture
sounds)

" Only mix-and-separate is used for clean sound learning

" Proposed framework is used for learning on mixtures:
¢ Combining mix-and-separate with proposed weakly supervised method

Lssp(B'US',0) = \s - Lurr(S',0) + A - Lrwr(B',0)
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Modifications of Conditional U-Net Architecture

Prediction
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Spectrogram
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Mask
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Prior works rely on unconditional U-
Net architecture with late-
conditioning

Shallow architecture is used in
general

For focusing on supervised learning
with clean sounds, shallow network
performed well

We modify the architecture for
enhanced feature extraction with
deeper conditioning
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Experimental Dataset

" MUSIC Dataset (Used for Synthetic Mixtures Training):
¢ Contains 823 audios of single sources
¢ Contains 17 classes of sounds
¢ Each video contains 174 minutes of sounds

" VGGSound Dataset (Used for Synthetic Mixtures Training):

¢ Contains nearly 180k videos of 10s duration
¢ Contains 309 classes

" AudioCaps Dataset (Used for Natural Mixtures Training) :
¢ Contains ~50k audios of 10s duration
¢ Contains natural captions
¢ Diverse sounding sources with variable number of sources

EnyAC © 2024 Project Discussion — 11 April 2024 23



EnyAC © 2024

Experimental Setups (Synthetic Training and Eval)

Synthetic Training:
¢ Every Training Mixture contains 2 sounds
¢ Every Training Mixture contains 3 sounds
¢ Every Training Mixture contains 4 sounds

Synthetic Testing:
¢ Every Test Mixture contains 2 sounds

¢ Every Test Mixture contains 3 sounds
¢ Every Test Mixture contains 4 sounds

Synthetic Training demonstrates the
real-scenario of complex environmental
mixtures with increasing complexity

Carried out with MUSIC and VggSound
datasets

Project Discussion — 11 April 2024
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Experimental Setups (Real-world Training and Eval)

Training:
¢ Contains the available environmental mixtures of
sounds

¢ 1~6 for AudioCaps

Synthetic Testing:
¢ Every Test Mixture contains 2 mixture of sounds
¢ Evaluation is carried on each mixture

Synthetic Training demonstrates the real-
scenario of complex environmental mixtures
with increasing complexity

Carried out with large-scale AudioCaps
dataset

Project Discussion — 11 April 2024

Caption:

An adult female speaks and
several people laugh, while slight
rustling occurs in the background
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Evaluation Metrics

" SDR (Source-to-Distortion Ratio):

¢ SDRis usually considered to be an overall measure of how good a source sounds
¢ If a paper only reports one number for estimated quality, it is usually SDR

" SIR (Source-to-Interference Ratio):

¢ This is usually interpreted as the number of other sources that can be heard in a source
estimate

¢ This is most close to the concept of “bleed”, or “leakage”

" SAR (Source-to-Artifact Ratio):

¢ This is usually interpreted as the amount of unwanted artifacts a source estimate has with
relation to the true source.

EnyAC © 2024 Project Discussion — 11 April 2024 26



Test SDR on 2-Source Mixture Separation

EnyAC © 2024

10

Performance on Higher Order Mixture Training

Performance on Multi-Source Training Mixtures

Mix-and-Sep (CLIPSep)
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Proposed Semi-sup (75% Single-source) ©n Single-Source Sounds
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4.6

3.5
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2-Source 3-Source 4-Source
Number of Sources in Training Mixtures
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Mix-and-Separate significantly
loses performance on higher
mixtures

Proposed framework largely
recovers performance loss on
higher mixtures

Learning with 5% clean sounds

surpass the supervised training
with 100% clean sounds in Mix-
and-Separate

This experiment is conducted on
MUSIC dataset
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Quantitative Results

Table 1: Comparison on MUSIC Dataset under the unsupervised setup. The supervised column is
also provided as an upperbound. SDR on 2-Source separation test set is reported for all cases. All
methods are reproduced under the same setting. * denotes implementation with our improved U-Net
model. Bold and blue represents the best and second best performance in each group, respectively.

Method Single-Source Multi-Source (Unsupervised)

(Supervised) 2-Source 3-Source 4-Source
Unconditional
PIT* (Yu et al., 2017) 8.0 +0.26 - - -
MixIT (Wisdom et al., 2020) - 32 +03¢ 23+057 1.4+035
MixPIT (Karamatl & Kirbiz, 2022) - 3.6 £046 2.1 £041 1.7 +035
Image Conditional
CLIPSep-Img (Dong et al., 2022) 6.8 +£025 3.8+027 294035 2.1+032
CLIPSep-Img* (Dong et al., 2022) 7.4 +022 4.6 +031 3.8+028 2.9 +043
CoSep* (Gao & Grauman, 2019) 7.9 + 0.8 49 +037 4.0+020 3.1+036
SOP* (Zhao et al., 2018) 6.5 +023 4.1 +041 35+026 2.7+042
Language Conditional
CLIPSep-Text (Dong et al., 2022) 7.7 £021 4.6 +035 35+027 2.7 +045
CLIPSep-Text* (Dong et al., 2022) 8.3 +o027 54 +o041 4.7 +032 3.8+028
BertSep* 7.9 +027 534031 4.0+022 3.1+027
CLAPSep* 8.1 +031 55+03 43+028 3.5+033
LASS-Net (Liu et al., 2022) 7.8 £0.25 524026 42+02 3.6+036
Weak-Sup (Pishdadian et al., 2020) - 31 +047 22+038 1.9+033
Proposed (w/ Timbre Classifier - concurrent training) - 50+029 454032 3.5+027
Proposed (w/ Timbre Classifier - pretrained) - 6.1 £033 5.2+037 4.1+035
Proposed (w/ Bi-modal CLAP) - 79 +035 7.0 +to042 6.2 +038
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Quantitative Results

Table 2: Comparisons of the proposed semi-supervised learning with different portions of single-
source and multi-source subsets. Bold and blue represents the best and second best performance.

EnyAC © 2024

Training Test Set Single-source Data Multi-source Mixture Data Performance
Method Mixture Dataset Fraction Dataset Fraction #Source (SDR)

Supervised MUSIC-2Mix MUSIC 100% - - - 8.1 +031
Supervised MUSIC-2Mix MUSIC 5% - - - 2.6 +033
Unsupervised MUSIC-2Mix - - MUSIC 100% 2 7.9 £o03s
Semi-Supervised MUSIC-2Mix MUSIC 5% MUSIC 95% 2 8.8 +0.28
Semi-Supervised MUSIC-2Mix MUSIC 5% MUSIC 95% 3 8.2 +022
Semi-Supervised MUSIC-2Mix MUSIC 5% MUSIC 95% 4 7.4 +031
Semi-Supervised MUSIC-2Mix MUSIC 10% MUSIC 90% 2 8.9 +0.26
Semi-Supervised MUSIC-2Mix MUSIC 25% MUSIC 75% 2 9.2 +024
Semi-Supervised MUSIC-2Mix MUSIC 75% MUSIC 25% 2 9.5 +£029
Semi-Supervised MUSIC-2Mix MUSIC 100% VGGSound 100% 2 9.9 +035
Semi-Supervised MUSIC-2Mix VGGSound 100% MUSIC 100% 2 9.7 £035
Semi-Supervised MUSIC-2Mix VGGSound 100% MUSIC 100% 3 9.2 +031
Semi-Supervised MUSIC-2Mix VGGSound 100% MUSIC 100% 4 8.9 +o042
Supervised VGGSound-2Mix  VGGSound 100% - - - 234023
Supervised VGGSound-2Mix VGGSound 5% - - - 0.4 +o3s
Unsupervised VGGSound-2Mix - - VGGSound 100% 2 2.2 4029
Semi-Supervised VGGSound-2Mix VGGSound 5% VGGSound 95% 2 3.1 +031
Semi-Supervised VGGSound-2Mix VGGSound 75% VGGSound 25% 2 3.4 +026
Unsupervised AudioCaps-2Mix - - AudioCaps 100% 1~6 29 +o023
Semi-Supervised AudioCaps-2Mix  VGGSound 100% AudioCaps 100% 1~6 4.3 +034

Project Discussion — 11 April 2024
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Test Metric Plot Over training Iterations
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Large increase of SDR and SIR denote better separation quality with
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Qualitative Results (Natural Mixtures)

“A woman speaks” “A cat crying”

CLIPSep
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Ours
(ICLR “24)
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Qualitative Results (Natural Mixtures)

“Metal Clashses” “A man speaks”

CLIPSep
(ICLR ¢23)

Ours
(ICLR “24)

\

: i
|
%5
f :
b
E»:&' i
!
|
i

EnyAC © 2024 Project Discussion — 11 April 2024 32



Qualitative Results (Synthetic Mixtures)

. . 1 “Accordion” “Violin”
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Qualitative Results (Synthetic Mixtures)

“Ukulele”
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" Unconditional source separation
¢ With no external text inputs

¢ With new unseen audio classes

" Joint editing and audio generation
¢ Leverage generative models for joint audio generation and editing
¢ Training-free/with minimal training

" Multi-modal fine-grained conditioning with videos in natural mixtures
¢ Automatic separation of sounds from videos

EnyAC © 2024 Project Discussion — 11 April 2024 35
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