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World Modeling

World Model
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Objective: Implicitly learn the dynamics laws of this
domain.

Recurrent world models facilitate policy evaluation. Ha & Schmidhuber, 2018.

Neural production systems: Learning rule-governed visual dynamics. Goyal, Bengio et al., 2021.



Compositional Generalization

Assuming 5 colors for each object
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| objects| = 3*5 |objects| =5%*5 |objects| = 20*5
#combinations = 455 #combinations = 53130 #combinations = 5.36x10%°



Compositional Generalization

Entity Composition Relational Composition
Generalization to composition of shapes not seen Entity Composition + Objects with shared attributes have shared
together during training dynamics.
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Compositional Generalization

Entity Composition
Generalization to composition of shapes not seen
together during training
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Compositional Generalization

Entity Composition
Generalization to composition of shapes not seen
together during training
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Relational Composition
Entity Composition + Objects with shared attributes have shared
dynamics.

Higher level rule: same color => cooperation
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Compositional Generalization
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Entity Composition

Generalization to composition of shapes not seen

together during training
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Relational Composition
Entity Composition + Objects with shared attributes have shared

dynamics.
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Shared Attributes = Color + Adjacency
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Symbolic Labelling:

Preprocessing
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Symbolic Labelling:

Zero-shot Labeling
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Learning Transferable Visual Models From Natural Language Supervision. Radford et al., 2021.




Symbolic Labelling:

Zero-shot Labeling
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Symbolic Labelling:

Concatenation
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Strawman A
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Q: What if we only use Symbolic Embeddings?

{4 : Trivially generalizes to attribute compositions. Robust selection module!

X : Symbols bottleneck expressivity. The circle is , hot Blue! Erroneous image
reconstruction.
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' Q: What if we only use Latent Embeddings?
D¢ Tendency to overfit to attribute compositions seen during training.
: ["4 : Latent embedding contains very expressive features. Good image
I reconstructions!
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Using both representations:
{4 : Selection robust to attribute compositions.
"4 : Latent embedding captures relevant reconstruction features.



Learning Objective (Frozen)
5 : Vision-Language
Foundation Model

— | \ , T [\l
____________________________________________________________ Cx-pos | 8.75 | Mpos
C’}"-I)OS @ . 25 — "‘?\[‘\Tpos j\z
CCOIOI' B 1 ue —- A [(;r)lor j\ 3
Cshape | (@ | M Symbolic
— _— Embeddings
\ /
MLP,
Sl Sl
Attenti = MLPs
¢ ention
52 + Concat || = Sz
8 ces -
S S3
Keys MLP I
- Laten.t - - L |
Entity EMbeddings {Ri,..., R} Spatial
Image Encod){er P
Neurosymbolic Decoder :
Attention-based y

D A Ol Module Selector »CMSE

Actions



Results
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Results
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Takeaways

« Explicit symbolic knowledge helps
with compositionality

« Extend, rather than replace, deep
representations

« Foundation models over language (and
code) give symbols for free

More Information:
o https://bit.ly/cosmos-wm
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