

Language Model Decoding as Direct Metrics Optimization

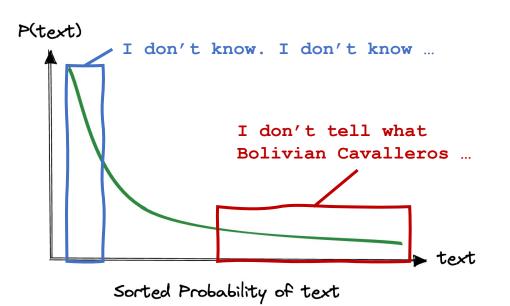
ICLR 2024

Haozhe Ji, Pei Ke, Hongning Wang, Minlie Huang

CoAI Group, Department of Computer Science, Tsinghua University

Background

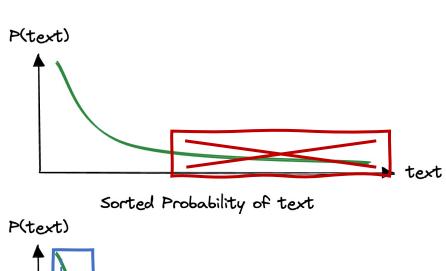
- **Problem**: Decode from language models (LMs) to produce human-like texts.
- **Motivation**: Two mis-specifications of the LM's distribution:
- (i) The unreliable long tail [Holtzman et al., 2020]
 - The low-probability samples are noisy, incoherent.
- (ii) The degenerated mode [Welleck et al., 2020]
 - The highest probability samples are repetitive and exhibit low diversity.



text

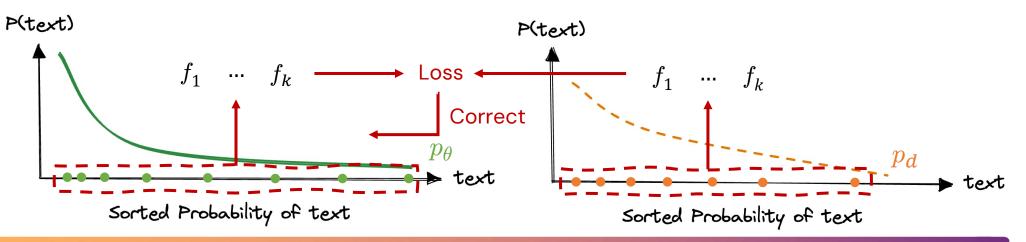
Background

- Existing solutions focus on "one end of the spectrum" with *ad-hoc* designs.
- (i) The unreliable long tail [Holtzman et al., 2020]
 - Sample from the truncated distribution with different criteria, e.g., top-k, top-p, typicality, etc.
- (ii) The degenerated mode [Welleck et al., 2020]
 - Search with contrastive objective to penalize repetitive patterns, e.g., repetitive tokens, n-grams, embeddings.



Sorted Probability of text

- Our solution: Correct the LM distribution by aligning with human distribution on metrics that reflect the mis-specifications, e.g., coherence, repetition, etc.
- Input:
 - (i) LM distribution p_{θ} (ii) K metric functions $f_k(\cdot)$ (iii) samples from human distribution p_d
- Goal:
 - Correct the LM distribution p_{θ} to align with human distribution p_d on the set of metrics $\{f_k\}_{k=1}^K$ with minimal deviation from p_{θ} .



• Formulation:

Finding the optimal decoding distribution q_{opt} that solves the constrained optimization problem.

$$egin{aligned} q_{ ext{opt}} &= rgmin_{q\in\mathcal{P}} D_{ ext{KL}}(q\|p_{ heta}) \ s.t. & \mathbb{E}_{\hat{oldsymbol{x}}\sim q}[f_k(\hat{oldsymbol{x}})] = \mathbb{E}_{oldsymbol{x}\sim p_d}[f_k(oldsymbol{x})], \quad k\in\{1,\cdots,K\}, \end{aligned}$$

- Alignment on set of metrics $\{f_k\}_{k=1}^K$:
 - **K** constraints that match the expected metric scores on the generated texts with the human texts.
 - Sampling from $q_{\rm opt}$ produces texts that are human-like as evaluated by the metrics.
- Minimal deviation from p_{θ} :
 - Minimize the reverse KL between q and p_{θ} to avoid over-optimization.
 - Reverse KL encourages q to seek the mode of p_{θ} while avoiding its long tail.

• Solving the optimization problem:

 The optimal decoding distribution q_{opt} has an analytic form defined as an energy-based model (EBM).

Proposition 1. The distribution that solves the optimization problem (1) is in the form of:

$$p_{\theta,\mu}(\boldsymbol{x}) \propto p_{\theta}(\boldsymbol{x}) \exp\left[-E_{\mu}(\boldsymbol{x})\right], \quad \forall \boldsymbol{x} \in S(p_{\theta,\mu})$$
 (2)

where $E_{\mu}(\mathbf{x}) = \boldsymbol{\mu}^{\top} \boldsymbol{f}(\mathbf{x})$ and $S(p) = \{ \mathbf{x} : p(\mathbf{x}) > 0 \}$ is the support of distribution p. $\boldsymbol{\mu} \in \mathbb{R}^{K}$ is determined by the constraints in [1].

- The EBM is parametrized by the product of an auto-regressive LM p_{θ} and an exponential energy term $\exp[-\mu^{\top} f(x)]$.
- Two remaining problems include:
 - Determining the coefficient $\mu = \{\mu_k\}_{k=1}^K$
 - Sampling form the EBM

• Theoretical guarantee of perplexity improvement

• The optimal decoding distribution q_{opt} improves the perplexity of the original LM distribution p_{θ} on human texts.

Proposition 2. The optimal solution q_{opt} of the optimization problem (1) satisfies:

1. $S(q_{opt}) \supseteq S(p_d)$, where $S(p) = \{ x : p(x) > 0 \}$.

2. $H(p_d, q_{opt}) = H(p_d, p_\theta) - D_{KL}(q_{opt} || p_\theta)$, where $H(p, q) = -\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \log q(\boldsymbol{x})$.

- Statement 1 establishes the feasibility of computing the perplexity of $q_{\rm opt}$
 - Existing heuristic decoding methods, e.g., truncation-based sampling and search methods are infeasible to calculate perplexity due to their sparse supports.
- Statement 2 reveals a non-negative perplexity (PPL) improvement of q_{opt} over p_{θ}

 $PPL(q_{opt}) = 2^{H(p_d, q_{opt})} < PPL(p_\theta) = 2^{H(p_d, p_\theta)}$

• As a distribution-level evaluation, the PPL improvement justifies that q_{opt} is generally a **better approximation** of the human distribution than p_{θ} .

• Determine the coefficient $\mu = {\{\mu_k\}}_{k=1}^K$

• Find μ that satisfies the K constraints

 $\mathbb{E}_{\hat{\boldsymbol{x}} \sim q}[f_k(\hat{\boldsymbol{x}})] = \mathbb{E}_{\boldsymbol{x} \sim p_d}[f_k(\boldsymbol{x})], \quad k \in \{1, \cdots, K\}$

- 1. Estimate by weighted importance sampling (WIS)
- 2. Minimize the error between LHS and RHS

Sampling from the EBM

- A Sampling-importance-resampling (SIR) approach
 - 1. Draw M samples from the LM p_{θ} given prefix
 - 2. Calculate the importance weight $e^{-\mu^{\top}f}$
 - 3. Resample from the empirical distribution
- igstarrow When M is finite, we empirically sample from $p_{ heta}$

with a temperature τ to increase convergence.

 Algorithm 1 μ_{opt} estimation with WIS

 Input: p_{θ} , F, learning rate α

 Output: μ_{opt}

 1: Initialize μ randomly

 2: Sample trajectories $\{\hat{x}^i\}_{i=1}^N \sim p_{\theta}$

 3: repeat

 4: $\hat{F} \leftarrow \frac{\sum_{i=1}^N \exp(-E_{\mu}(\hat{x}^i))f(\hat{x}^i)}{\sum_{i=1}^N \exp(-E_{\mu}(\hat{x}^i))}$

 5: $\mu \leftarrow \mu - \alpha \nabla_{\mu} \sqrt{\frac{1}{K} \|1 - \hat{F}/F\|_2^2}$

 6: until convergence

 7: $\mu_{opt} \leftarrow \mu$

Algorithm 2 Conditional Sampling v	vith SIR
Input: p_{θ}, E_{μ} , prefix $\boldsymbol{x}_{\leq t_0}, M, \tau$	
Output: continuation $x_{>t_0}$	
1: for $i \leftarrow 1$ to M do	⊳ In parallel
2: Sample $\hat{\boldsymbol{x}}_{>t_0}^i \sim p_{\theta}^{\tau}(\cdot \boldsymbol{x}_{\leq t_0})$	
3: Compute $w_i \leftarrow \exp(-E_{\mu}(\boldsymbol{x}))$	$_{< t_0}, \hat{x}^i_{> t_0}))$
4: end for	
5: Sample $j \sim \text{Categorical}\left(\frac{w_1}{\sum_{i=1}^{M} w_i}\right)$	$\left(\frac{w_M}{\sum_{i=1}^M w_i}\right)$
6: Set $\boldsymbol{x}_{>t_0} \leftarrow \hat{\boldsymbol{x}}_{>t_0}^j$	

7

Experiments

- Datasets: Wikipedia (Wikitext-103), News (Wikinews)
- Models: GPT-2 XL (1.5B), OPT-6.7B
- Metrics:
 - ◆ **Repetition** [Welleck et al., 2020]: seq-rep-*n* (*n*=2,3,4), tok-rep-*l* (*l*=8,12,32)
 - Coherence [Su et al., 2022]: Cosine similarity between embeddings of $x_{\leq t_0}$ and $x_{>t_0}$
 - **Diversity** [Li et al., 2022]: Aggregated n-gram diversity
 - Information [Braverman et al., 2022]: Exponential of entropy rate evaluated by an LM
 - MAUVE [Pillutla et al., 2021]: Distributional similarity between two sets of texts

• Main results:

		Mada		Wikipedia					News						
	Method		sr-4	tr-32	СОН	DIV	$e^{^{\mathrm{ENT}}}$	MAU	sr-4	tr-32	СОН	DIV	$e^{^{\mathrm{ENT}}}$	MAU	$\Delta_{ m ref}$
		Reference	0.48	21.3	62.3	92.5	23.2	-	0.29	18.7	66.6	94.1	13.8	-	
,		Greedy	60.9	65.5	60.2	8.03	2.29	59.7	53.2	58.2	63.8	13.2	2.19	65.2	39.8
		Top-k	2.11	23.4	<u>60.9</u>	87.8	10.1	77.8	0.95	20.3	<u>64.7</u>	91.7	8.17	<u>96.3</u>	3.6
Sampling	X	Nucleus	1.19	20.0	57.3	92.4	17.3	78.3	0.80	18.7	60.8	93.5	11.0	95.3	2.3
	<u>[-2</u>	Typical	0.81	17.4	54.9	94.5	<u>30.1</u>	78.7	0.42	16.9	57.2	95.3	18.2	95.0	3.9
Search	ĿΒ	CD	1.31	28.2	68.7	85.9	7.55	77.8	0.63	23.2	71.2	90.5	6.55	95.1	5.8
ocaron	0	CS	1.78	23.0	56.9	90.6	5.25	<u>83.3</u>	0.77	<u>19.2</u>	63.6	94.1	4.18	95.7	4.2
		DAEMON	0.42	22.5	62.5	<u>92.2</u>	22.8	88.1	0.18	18.7	66.3	<u>94.5</u>	13.7	97.4	0.3

- Generally, sampling methods are worse in coherence, search methods are worse in diversity and repetition.
- \blacklozenge Our method (Daemon) achieves the lowest $\Delta_{\rm ref}$ averaged on all metrics and attains the highest MAUVE score.

• Other results:

Experiments

Perplexity evaluation

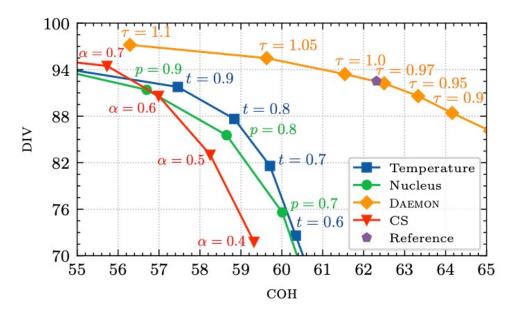
Model		pedia	Ne	WS
Widdei	ori	imp	ori	imp
GPT-2 XL	23.1	22.0	13.9	13.1
OPT-6.7B	16.4	16.2	10.8	10.2

Consistent perplexity improvement across models and datasets

Human evaluation

Ours vs.	Flue Win	ency Lose	Cohe Win	rence Lose	Informativeness Win Lose			
CD	0.54	0.35	0.48*	0.36	0.48*	0.27		
CS	0.53*	0.34	0.47*	0.29	0.41	0.33		
Nucleus	0.54*	0.33	0.66*	0.15	0.45*	0.30		
Typical	0.53*	0.30	0.62*	0.19	0.44*	0.23		

Evaluating the coherence-diversity trade-off



• Tuning temperature yields a better frontier of coherence and diversity that dominates the baseline methods.

Conclusion

- We propose to frame decoding from LM as an optimization problem, which finds the optimal decoding distribution that align with human distribution on multiple metrics.
- We prove the optimal decoding distribution is guaranteed to improve the perplexity of the original LM, indicating a general improvement of approximating the human distribution.
- Finally, our extensive empirical results demonstrate that our method achieves better performance of alignment with human texts on multiple metrics, and superior quality-diversity trade-off.