LEGO-Prover: Neural Theorem Proving
with Growing Libraries

Haiming Wang'® Huajian Xin'® Chuanyang Zheng® Zhengying Liu?®
Qingxing Cao! Yinya Huang* Jing Xiong! Han Shi* Enze Xie?

Jian Yin't Zhenguo Li2 Xiaodan Liang!->-67

'Sun Yat-sen University ?Huawei Noah’s Ark Lab 3The Chinese University of Hong Kong
4City University of Hong Kong SMBZUAI ¢DarkMatter Al Research

Automated Theorem Proving

Problem statement

V2 isirrational.
lemma "sqrt 2 € Q"

-

Prover @

-

Proof
Assuming V2 € Q, we have v2=a/b, and a, b are
coprime. Then we have 2 = a?/b? and 2Xxb? = a?.
Thus, we know a is even, a = 2c¢. Substituting a into
the previous equation, we have b? = (2 * ¢)2. Thus,
we know b is also even, and a, b are not coprime. This

contradicts the original assumption. B

proof
assume “sqrt 2 € "

then obtain a biiint where "sqgrt 2 = a/b"
'coprime a b" "b = 0" sledgehammer

then have c3 “2 = a"2 / b"2"
sledgehammer

then have "b"2 #» 0" sledgehammer

then have *: "2+*b"2 = a"2"
sledgehammer

then have
sledgehammer

then obtain c::int where "a=2+c”
sledgehammer

with * have “"b"2 = 2#%¢"2°
sledgehammer

then have “even b"
sledgehammer

with «coprime a b, (even a,
show False sledgehammer

qed

‘even a'

reven b,

-

BV
Formal system \ep &?

w9

N _
e _

LM + Search (GPT-f OpenAl 2021, Thor Cambridge 2021,

DT-Solver Ours 2023):

* Language model suggests action given current state.

* Formal system executes action and updates state.
* Search algorithm finds correct action path.

lemma "sqrt 2 € Q"

%4y goals: 1.sqrt 2 ¢ Q
%> proof

%) goals: 1.sqrt 2 € Q = False

%> assume "sqrt 2 € Q"

Zy premise: sqrt2 € Q
goals: 1.sqrt2 € Q = False

&> then obtain a b::int where "sqrt 2 =
"coprime a b" "b # 0" sledgehammer

73 premise: sqrt 2 = real_of inta/real_of intb

coprimeab
bz0
goals: 1.sqrt 2 € Q = False
% then have c: "2 = a*2 / b*2"
sledgehammer
o =
&

a/b"

Automated theorem proving:

LLM with ICL (DSP Cambridge 2022, Subgoal-based
HKU 2023):
* ChatGPT (gpt-3.5-turbo) generates entire proof in

one go, with in-context learning
Formal System verifies the proof

lemma "sqrt 2 € Q"

é'

proof

assume "sqrt 2 € Q"

then obtain a b::int where
‘coprime a b" "b = 0"

then have ¢t "2 = a"2 /
sledgehammer

then have "b"2 = 0°

then have *: "2+*b"2 = a"2"
sledgehammer

then have
sledgehammer

then obtain c::int where
sledgehammer

with * have "b"2
sledgehammer

then have “even b"
sledgehammer

with «coprime a b, r(even a,
show False sledgehammer

p's"

‘even a"

- 2%c"2°

qed

Y
%3 @ Nogoals!

. Error: xxx

@ Verifiable
@ Longer reasoning chain
@ Data scarcity

"sqrt
sledgehammer

sledgehammer

"a=2+*c”

reven b

2 = a/b"

Motivation

* Problems with existing provers:
* Each theorem is proved independently.
* Proven conjectures are not shared among problems.
* LLM struggles to generate correct long-chain proof (hallucination).

* |deal provers:

* Extract & reuse useful lemmas during each theorem proving, to reduce reasoning
length

* Maintain & grow a library of proven theorems/lemmas (online & offline)
* Leverage the power of LLM (prover)

* Leverage the verification capability of formal systems (Lean, Isabelle)

* Imitate human proving process

LEGO-Prover: Prove Theorem Like Building LEGO

theorem amcl2a_2003_p24:
. fixes a b::real
Prove in a block-by-block manner PR SEsiigs, b MR
° Prove Sub_goal |emmas 6 ShO\ffIS “"In (a/b) / Ina + 1ln (b/a) / Inb
.] <0" (is "?L = _")
* Prove theorem using sub-goal lemmas. [
. as. | - [e
e Sub-goal Lemmas: retrieved from skill library, or constructed online ; fixes x y :: real
L----p assumes "x >= 0" "y >= @" ----
T T T T T T s s s m—mm———————— - - shows "X"2 + y*2 >= 2kxxy" !
.7 S using assms by <ATP> - :
’ N N
’ o) \ pr— 1
J o Y (x lemma 1. Retrieved from &= , @ proves the ! Copy
1 inequality of arithmetic ana-geometric means x) '
1 statement proof : lemma ‘ : :
I | fixes x y :: real i
: » > : assumes "x >= @" "y >= 0" ---
| | shows "x"2 + y~2 >= 2kxky"
: prover!| request : using assms by <ATP>
: ‘ y : (x lemma 2. Synthesized by @’, x’ proves a
1 r I special form of the AM-GM inequality required
| ret:_;;;e" new Lemma : in.the proof of the target theorem.. x)
: *] : lemma
| 3 .
p— I fixes x y :: real
| = / —] : assumes "x > 0" "y > Q"
: -— -— I shows "x/y + y/x >= 2"
| growing skill library : proof - + =
1 s - * | e >
I /) I have "x/y + y/x >= 2 x sqrt(x/y) * sqrt(y/x)" “
| \ | A : using @ [of "sqrt(x/y)" "sqrt(y/x)"] c@ c1
' o ! I | by <ATP>
! N » | L 4 I .
1 : : ! lved
: e |
! . ! theorem amcl2a_2003_p24:
1 ! — P
| | : | fixes a b::real
1 ! ! I assumes "b=a" "1<b"
\ %] | ‘ ! shows "ln (a/b) / ln a + ln (b/a) / ln b <0"
\ >, R /] (is "7L = _")
AN request : request | rseoquveest P proof -
S . solver .’ emw
R e S also have ... < 0"
using ..~ <0 < x> <@ < y> by <ATP>
LEGO-Prover consists of a prover, an evolver, and a growing skill library finally show ?thesis .

qed

LEGO-Prover: Prover

Three proof steps

informal statement

If a=b>1, what
is the largest pos-
sible value of
log,(a/b)+log,(b/a)?
Show that it is 2.

informal
solver

Informal solver: produce an informal proof
Decomposer: produce step-by-step informal proof and sub-goals lemma statements, which are used to retrieve
useful lemma from the skill library.
Formalizer: prove theorem with step-by-step informal proof and retrieved lemmas block-by-block.

-
skill library

lemma vector store

@ request vector store
-

problem vector store

(2)

(informal proof) é decomposed 4 formal proof R
. P
...Since a and b informal proof lemma @ :
are both greater 1. Introduce vari- fixes x y :: real
than 1, using AM-GM ables x. assumes "x >= Q" "y >= 0"
inequality gives T "=~”| 2. Given that b >1 |°7 " TT 7| shows "x*2 + y*2 >= 2skxxy"
that the term in decomposer e formalizer using assms by <ATP>
parentheses must be) 6. Use the AM-GM in-— A Tenna S p—
at least 2, so the 1 equality to argue | . L
largest possible] | fixes x y :: real -—
g p that the term y / X n non n
values is 2-2=0... ! +x /y is at least I assumes "x > @" "y > 0
J !) y | shows "x/y + y/x >= 2"
: \") | proof -
. oo
: : have "x/y + y/x >= 2 x sqrt(x/y) * sqrt(y/x)"
) !) using @ [of "sqrt(x/y)" "sqrt(y/x)"] c@ cl
! 1 by <ATP>
I
| saa
1
1 qed
é i decomposed : NS
' formal goals | theorem amcl2a_2003_p24: formal statement
‘ ‘ . fixes a b::real
\1em"_‘a @ : request, lemma @ : similar lemma assumes "b=a" "1<b"
- fixes xy :: real - e s v ag el shows "ln (a/b) / ln a + ln (b/a) / ln b <o"
| assumes "X >= 0" "y >= 0" | .---o-o--- - cumes Xx';_ 0" "y >= o" (is "?2L = ")
L:Sf?yi gﬁ?ggjgy;%fif:%fﬁflt—,4,,) : shows "x"2 +_yA2 >Z Z;X*y" proof -
request lemma i saa " "
llemma w— Vector : usi;? ai;$f add: also have "... = 0
| Ofi store | using &% <0 < x> <0 < y> by <ATP>
fixes x y :: real sum_squares_bound) ¥
AN assumes "x > 0" "y > Q" finally show ?thesis .
|
shows "ln (a / b) = ln a - ln b" ‘-~ wms->not found qed
NG AN J

LEGO-Prover: Prover

Three proof steps

informal statement

If a=b>1, what
is the largest pos-
sible value of
log,(a/b)+log,(b/a)?
Show that it is 2.

informal
solver

Informal solver: produce an informal proof
Decomposer: produce step-by-step informal proof and sub-goals lemma statements, which are used to retrieve
useful lemma from the skill library.
Formalizer: prove theorem with step-by-step informal proof and retrieved lemmas block-by-block.

-
skill library

lemma vector store

@ request vector store
-

problem vector store

(2)

(informal proof) é decomposed 4 formal proof R
. P
...Since a and b informal proof lemma @ :
are both greater 1. Introduce vari- fixes x y :: real
than 1, using AM-GM ables x. assumes "x >= Q" "y >= 0"
inequality gives T "=~”| 2. Given that b >1 |°7 " TT 7| shows "x*2 + y*2 >= 2skxxy"
that the term in decomposer e formalizer using assms by <ATP>
parentheses must be) 6. Use the AM-GM in-— A Tenna S p—
at least 2, so the 1 equality to argue | . L
largest possible] | fixes x y :: real -—
g p that the term y / X n non n
values is 2-2=0... ! +x /y is at least I assumes "x > @" "y > 0
J !) y | shows "x/y + y/x >= 2"
: \") | proof -
. oo
: : have "x/y + y/x >= 2 x sqrt(x/y) * sqrt(y/x)"
) !) using @ [of "sqrt(x/y)" "sqrt(y/x)"] c@ cl
! 1 by <ATP>
I
| saa
1
1 qed
é i decomposed : NS
' formal goals | theorem amcl2a_2003_p24: formal statement
‘ ‘ . fixes a b::real
\1em"_‘a @ : request, lemma @ : similar lemma assumes "b=a" "1<b"
- fixes xy :: real - e s v ag el shows "ln (a/b) / ln a + ln (b/a) / ln b <o"
| assumes "X >= 0" "y >= 0" | .---o-o--- - cumes Xx';_ 0" "y >= o" (is "?2L = ")
L:Sf?yi gﬁ?ggjgy;%fif:%fﬁflt—,4,,) : shows "x"2 +_yA2 >Z Z;X*y" proof -
request lemma i saa " "
llemma w— Vector : usi;? ai;$f add: also have "... = 0
| Ofi store | using &% <0 < x> <0 < y> by <ATP>
fixes x y :: real sum_squares_bound) ¥
AN assumes "x > 0" "y > Q" finally show ?thesis .
|
shows "ln (a / b) = ln a - ln b" ‘-~ wms->not found qed
NG AN J

LEGO-Prover: Prover

Three proof steps

informal statement

If a=b>1, what

is the largest pos-

sible value of
log,(a/b)+log,(b/a)? | =~
Show that it is 2.

P§

informal
solver

-
skill library

lemma vector store

problem vector store

@ request vector store
-

(2)

Informal solver: produce an informal proof
Decomposer: produce step-by-step informal proof and sub-goals lemma statements, which are used to retrieve
useful lemma from the skill library.
Formalizer: prove theorem with step-by-step informal proof and retrieved lemmas block-by-block.

(informal proof) é decomposed 4 formal proof R
...Since a and b informal proof lemma @ :
are both greater 1. Introduce vari- fixes x y :: real .
Fhan 1,.u51ng AM-GM L . ables x. 1. . assumes Ax >= 2 y >= 10 .,
“\”| inequality gives 2. Given that b > 1 sh9ws X2 +by ZA;; PES €Y
that Eﬂe term 1: : decomposer e . formalizer using assms by <ATP>
parentheses must be) 6. Use the AM-GM in- A lemma =
at least 2, so the I : § new lemma
1 S | equality to argue ! fixes x y :: real -
1argest.p0551ble that the term y / x 1 y i reat "
values is 2-2=0... ! +x/ . t least 1 assumes "x > 0" "y > 0
)) : x / y is at leas | shows "Xx/y + y/x >= 2"
: \" Y, | proof -
. oo
| : have "x/y + y/x >= 2 x sqrt(x/y) * sqrt(y/x)"
\ |) using @ [of "sqrt(x/y)" "sqrt(y/x)"] c@ cl
! 1 by <ATP>
I
| saa
1
1 qed
(i1 decomposed : N
' formal goals | theorem amcl2a_2003_p24: formal statement
‘ ‘ . fixes a b::real
"Lemn_ia @: request+ lenma @ : = oHiler e assumes "b=a" "1<b"
e R - fixes x v :: real shows "1n (a/b) / ln a + ln (b/a) / ln b <0"
| assumes "X >= Q" "y >= 0" | .ccooooon-. - e Xx';_ Oh ny >= o (is "72L = ")
| LLEV2.N A — " = = —
r:Sggyg;:E—Egjgy:%fi::%fﬁflgg,, - : shows "X*2 + y*2 >= 2kxky" proof -
t 1 i saa
llemma requ.e-s'_._ veecmt“:)ar : us:l.bng (assisnr]ns add: also have "... = 0"
; store Y P i using 29 <0 < x> <@ < y> by <ATP>
I fixes x y :: real ‘ sum_squares_bound) 9 ¥ y> by
— | | assumes "x > 0" "y > 0" finally show ?thesis .
|
shows "1ln (a / b) = ln a - ln b" ‘-~ wws->not found qed
_ AN J

LEGO-Prover: Prover

Three proof steps

informal statement

If a=b>1, what
is the largest pos-
sible value of
log,(a/b)+log,(b/a)?
Show that it is 2.

informal
solver

Informal solver: produce an informal proof
Decomposer: produce step-by-step informal proof and sub-goals lemma statements, which are used to retrieve
useful lemma from the skill library.
Formalizer: prove theorem with step-by-step informal proof and retrieved lemmas block-by-block.

-
skill library

lemma vector store

@ request vector store
-

problem vector store

(2)

(informal proof) é decomposed 4 formal proof R
...Since a and b informal proof lemma @ :
are both greater 1. Introduce vari- fixes x y :: real
than 1, using AM-GM ables x. assumes "x >= Q" "y >= 0"
inequality gives T "T7T| 2. Given that b >1 |~~~ © = > shows "X"2 + y*2 >= 2kxky"
that the term in decomposer e formalizer using assms by <ATP>
parentheses must be) 6. Use the AM-GM in-— A lemma &5 S p—
at least 2, so the 1 equality to argue | . - L
largest possible 1 that the term y / x I fixes x y :: real . -
values is 2-2=0... ! +x/y is at least I assumes "x > @" "y > 0
J !) | shows "x/y + y/x >= 2"
: \") ! proof -
|
. oo
: : have "x/y + y/x >= 2 x sqrt(x/y) * sqrt(y/x)"
) !) using @ [of "sqrt(x/y)" "sqrt(y/x)"] c@ cl
! 1 by <ATP>
I
| saa
1
1 qed
é i decmposed :) [——
' formal goals | theorem amcl2a_2003_p24: formal statement
‘ ‘ . fixes a b::real
"Lemn_ia @: request+ lenma @ : Ay e assumes "b=a" "1<b"
- fixes xy :: real - e s v ag el shows "ln (a/b) / ln a + ln (b/a) / ln b <o"
| assumes "X >= 0" "y >= 0" | .----f----. - cumes Xx';_ " My >= gn (is "?2L = ")
| [LRVY.N A — n = = -
r:Sggyg;:E—Egjgy:%fi::%fﬁflgg,, 1 : shows "X"2 + y*2 >= 2kxky" proof -
request lemma i saa " "
llemma | Vector : usi;? ai;$f e also have !... = 0
: store r using &0 <@ < x> <0 < y> by <ATP>
I fixes x y :: real ‘ sum_squares_bound) 9 ¥ y> by
| assumes "x > o" "y > Q" finally show ?thesis .
|
shows "1ln (a / b) = ln a - ln b" ‘-~ wws->not found qed
NG AN J

LEGO-Prover: Evolver

Transforms existing skills into a more general and
reusable form, or directly solves requested
subgoals proposed by the prover.

* Directional transformer evolves skill using
four type of specific direction

* Request solver directly solves the request
proposed by the decomposer.

Different types of directional transformer

Evolve type Description
) Determine the essential ideas, methods, or
Identify key concepts) . s
theorems that are crucial to solving the initial problem.
p . If the problem involves specific numbers, generalize
arameterize ,) . .
it by replacing these with variables.
Scale complexity Try both simpler and more complicated versions of the

problem to see how the approach adapts.

Extend dimensions

If the problem is defined in a specific number of dimensions,
consider if it holds in more or fewer dimensions.

-4 em amcl2a_2003_p24: imi ‘
) .- Lll:g;es e rgal _P similar problem :'l.emn_'la.: evolved lemma
lemma 9: lemma ':,':cbtloerm assumes "b=a" "1<b" . w :\:)s“::!e)s(Xx';;gﬁl..y >= Q"
. fixes x y :: real /' store .shgws 1n"(a/b) / lna+ 1n (b/a) / Inb <0 ' shows "2 % sqrt (a % b) <= a + b"
' assumes "x >= Q" "y >= Q" : (is "7L < ") v ~ using assms
lemna __ Shows "x"2 + y"2 >= 2wy :] L ‘ by (simp add: real_sqrt_mult) R
vector >, using assms ie----wm-> lemma) : similar request <-----------c--seeseooeoo- > -y & y (simp add: real_sqrt_mult) 3
- . request fixes X - i +
store : by (simp add: . vector assumes Xx >= Q" "y >= Q" directional 'Lemma ': solved request -—
sum_squares_bound) . store . oA o 5 transformer | fixes a b :: real lemma
. shows "Xx*2 + y"2 >= 2kxxy <« vector
.) assumes "a > 0" "b > 0" store
77777777777777777777777 . shows "ln (a / b) =1na - 1n b" 4
[request , T _ -~ S e proof - !
lemma é : lemma §@: similar lemma
-— . n =
reauest ., fiyer x v :: real e ws..» fixesab ::real . N Lo L (6) e L &) T U 77
vector y is Ny S QY Mp > Q" b)" using assms by (simp add: ln_div) .
[n Q" " " lemma assumes 'a 0 b (7} | e 0 B .
store assumes "X > y > vector u - " , also have "... = 1n a - ln b" using--
| Shows ||'Ln (a / b) — 'Ln a - 'Ln bll. Shows 109 a b 1n b \/ 1n a request o o
,,,,,,,,,,,,, - e R _‘\’ store by (Simp add: 1og def) < solver \aSSIEIS by (Slmp add: 1n_d1V)
N, SRS - . I finally show ?thesis .

.

.

Sl .- ‘qed
‘

Experiments

* Thor (Cambridge, NeurlPS 2022): LM + Search. LM trained on single step state-action pairs. Find proof with best first search.
* Thor + expert iteration (Google + Cambridge, NeurlPS 2022): LM + Search. Extend Thor with extensive data by Codex.

* DSP (Cambridge, ICLR 2023): LLM with ICL, use informal proof to guide Codex to generate formal sketch.

* Subgoal-Learning (HKU + Cambridge, NeurlPS 2023): LLM with ICL, extends DSP with step-by-step informal proof.

Success rate LLM miniF2F-valid miniF2F-test
Baselines

Thor (Jiang et al., 2022a) - 28.3% 29.9%
Thor + expert iteration (Wu et al., 2022) Codex 37.3% 35.2%
Draft, sketch, and Prove (Jiang et al., 2022b) Codex 42.6% 39.3%
Subgoal-Learning (Zhao et al., 2023) ChatGPT 48.0% 45.5%
Ours (100 attempts)

LEGO-Prover (model informal proof) ChatGPT 52.4% 45.5%
LEGO-Prover (human informal proof) ChatGPT 55.3% 50.0%
LEGO-Prover* ChatGPT 57.0% 50.0%
Ablations (100 attempts)

- Skill Library (human informal proof) ChatGPT 50.4%(—4.9%) -

Experiments: Case Study

a retrieved skill
lemma EINGTD:

fixes x :: real
assumes "x > 0"
shows "x + 1/(2kx) = sqrt 2"
proof -
have "(sqrt x — sqrt (1/(2%x)))"2 = @" by simp
then have "x + 1/(2xx) - 2 % sqrt x * sqrt (1/(2%x)) = 0"
by (smt (verit) add_le_imp_le_diff assms divide_nonneg_nonneg less_eq_-
real_def real_sqrt_pow2 sum_squares_bound)
then have "x + 1/(2%x) - sqrt 2 = 0"
by (metis add_divide_distrib assms div_by_1 divide_divide_eq_right di-
vide_self less_numeral_extra(3) mult_2 one_add_one real_div_sqrt re-
al_sqrt_divide real_sqrt_eq_1_iff real_sqrt_gt_0_iff real_sqrt_one times_di-
vide_eq_right zero_le_numeral)
then have "x + 1/(2%x) = sqrt 2" by simp
then show ?thesis by simp

\Sed

J
4 synthesized proof h
lemma ETNGT:

fixes x :: real
assumes "x > 0"
shows "x + 1/(2%x) = sqrt 2"
proof -
have "(sqrt x - sqrt (1/(2%x)))”2 = 0" by simp
then have "x + 1/(2%x) — 2 % sqrt x * sqrt (1/(2%x)) = o"
by (smt (verit) add_le_imp_le_diff assms divide_nonneg_nonneg less_eq_-
real_def real_sqrt_pow2 sum_squares_bound)
then have "x + 1/(2%x) - sqrt 2 = 0"
by (metis add_divide_distrib assms div_by_ 1 divide_divide_eq_right di-
vide_self less_numeral_extra(3) mult_2 one_add_one real_div_sqrt re-
al_sqrt_divide real_sqrt_eq_1_iff real_sqrt_gt_0_iff real_sqrt_one times_di-
vide_eq_right zero_le_numeral)
then have "x + 1/(2%x) = sqrt 2" by simp
then show ?thesis by simp
qed

theorem algebra_amgm_faxinrrp2msqrt2geq2mxmldiv2x:

"AX. (x>0) = 2 -sqrt 222 - x -1/ (2 % x)"
proof -

fixes x :: real

assumes h@: "x>0"

(%Step 1: We want to show that $x + \frac{1}{2x} \geq \sqrt{2}$ is true.x)

(x Step 2: Apply the AM-GM inequality to x and $\frac{1}{2x}$ to get $x
+ \frac{1}{2x} \geq 2\sqrt{\frac{x}{2x}}$. *)

(x Step 3: Simplify $2\sqrt{\frac{x}{2x}}$ to $\sqrt{2}$. *)

(x Step 4: Conclude that $x + \frac{1}{2x} \geq \sqrt{2}$ is true. x)
have c1: "f (500 % (6/5)) = f 500 / (6/5)"

have "x + 1/(2%x) = sqrt 2" using EIGMIOF h@l by simp

(% Step 5: Since $2 - \sqrt{2} \geq 2 - x - \frac{1}{2x}$ is equivalent to
$x + \frac{1}{2x} \geq \sqrt{2}$, we can conclude that $2 - \sqrt{2} \geq 2
- x - \frac{1}{2x}$ is true. x*)

then show "2 - sqrt 2 22 - x = 1/ (2 * x)" by simp
ged

- J
(a) Directly Use

Retrieved skill:
lemma am_gm: For a real number x, x > 0, prove that x +

~ >
2X

—\ 2

Proof. We have [/X +\[= 0. Expanding the inequality,

1

2X
) 1 1)

we obtain x +§ — 2 %4/X % \/ﬂ > 0. From which we have x +

i—\/'ZZO,andthusx +i2\/7.l
2X 2X

1 copy paste by LLM

Synthesized proof:

lemma am_gm: For a real number x, x > 0, prove that x +
—>2.
2X

—\ 2

Proof. We have | X + \/

% = 0. Expanding the inequality,

we obtain x +2—1X — 2 x4/x * \/% = 0. From which we have x +

i—\/.ZZO,andthusx +i2\/7.l
2X 2X

theorem algrebra_amgm_faxinrrp: Given a real number x,
prove that the expression 2 — V2 >2 — x — %C holds true for all
x> 0.

Proof. Using the proven lemma am_gm, we can show that x +
2—1x > /2. Multiplying both sides with -1 and add 2, we obtain

2-VZI>2-x—+.®m
2X

Case directly use:

A verified lemma am_gm is retrieved from
skill libraries (with proof).

Formalizer synthesized final proof using
retrieved skill directly.

1) Copy pasted the lemma am_gm in the
proof code directly.

2) Prove main theorem using the proven
am_gm lemma.

Experiments: Case Study

Case propose lemma by imitation:

A verified lemma prod_1n_4n is retrieved
from skill libraries (proof).

Formalizer synthesized final proof by solving
the lemma imitating the retrieved skill.

1) Imitate the lemma prod_1n_4n. The
formalizer uses induction to prove
prod_frac_common_factor.

2) Prove main theorem using the proven
prod_frac_common_factor lemma.

Retrieved skill:

lemma prod_1n_4n: for a natural number n, prove that
[114 xk =4"«n!

Proof. Let’s prove by induction on n. For the base case we have
[T} 4 = k = 4! = 1!, we have 4 = 4. For induction step, assuming

[L4%k=4+j, weprove that [/ 4 x k = 4/%1 « (j + 1)1,
Since [, 4+ k=47 *jl x (4 x (j+ 1)), thus [, 4+ k =
G (+1). W

lPropose lemma by imitation

Synthesized proof:

lemma prod_frac_common_factor: for a natural number n and
ak+a
a real number a, prove that]_[n n+1

Proof. Let’s prove by induction on n. For the base case we have
1ak+a _ axl+a

=1+ 1. For induction step, we have

17k Tax
ak+a _ ax(n+1)+a ak+a _ ax(n+1)+a
[+t = antl) [—= (a4 1=n+
ax(n+1) ax(n+1)

1+1.I

theorem amc12a_2008_p4: Prove that []3° =502.

]»4k-F4
Tak
Proof. Using the proven lemma prod_frac_common_factor, we

can show that H501 Kt —501+1=7502.m

-
RELLClprod_1n_dng

fixes n :: nat

shows "([lk = 1..n.
proof(induct n)

case 0

then show ?case by simp
next

case (Suc n)

then show ?case by (simp add: algebra_simps)

d
\J¢ Y,
-

retrieved skill

(4 % k)) = 4*n % fact n"

synthesized proof
L L Elprod_frac_common_factorg

fixes n:: nat and a::real

assumes "a # 0"

shows "([k = 1..n.
proof(induct n)

case 0

then show ?case by simp
next

case (Suc n)

have "([lk = 1..Suc n. (a x k + a) / (a *x k)) = ((a % Suc n + a) / (a * Suc
n)) x (k = 1..n. (a x k + a) / (a x k))"

(axk+a)/ (axk)) =n+1"

by simp

also have "... = ((a * Suc n + a) / (a *x Suc n)) * (n + 1)"
using Suc by simp

also have "... = Suc n + 1"

using assms by (smt (verit) add.commute add_divide_distrib divisors_zero
nonzero_mult_div_cancel_left nonzero_mult_divide_mult_cancel_right of_nat_1
of_nat_add of_nat_neq_0 plus_1_eq_Suc right_inverse_eq times_divide_eq_left)
finally show ?case by simp
qed

theorem amcl2a_2008_p4:

"(Mk::nat=1..501. ((4::real) x k + 4) / (4 *x k)) = 502"
proof -

(% Step 1: Rewrite the given product as $\frac {8}{4}\cdot\frac {12}{8}\c-
dot\frac {16}{12}\cdots\frac {4n + 4}{4n}\cdots\frac {2008}{2004}$. *)

have "([k::nat=1..501. ((4::real) * k + 4) / (4 % k)) = ([lk::nat=1..501.
(4 x (k+1)) /7 (4 %Kk)"

by eval

(% Step 2: Simplify the product by canceling out common factors. Notice
that each term in the numerator cancels with the corresponding term in the
denominator, leaving only the last term $\frac {2008}{4}$. x)

also have "... = ([lk::nat=1..501. (k + 1) / k)"
by eval

(% Use lemma 1 to simplify the product)

also have "... = 501 + 1"

using [T ESTI(of “1::real” "501"] by eval
(% Step 3: Calculate the value of $\frac {2008}{4}$ to find that it is
equal to $502%. x)
also have "... = 502"
by simp
(x Step 4: Conclude that the given product is equal to $502%. x)
finally show ?thesis by simp

\EEd)
(b) Propose Lemma by Imitation

Conclusion

1. We proposed LEGO-Prover, a novel method for automated theorem proving, which utilizes a
growing skill library to construct proof in a modularity way.

2.The learned skill library serves as a valuable enhancement on the standard Isabelle library, which
includes many useful high-level lemmas that are useful for other problems.

3. LEGO-Prover advances the state-of-the-art pass rate on miniF2F-valid (48.0% to 57.0%) and
miniF2F-test (45.5% to 50.0%)

