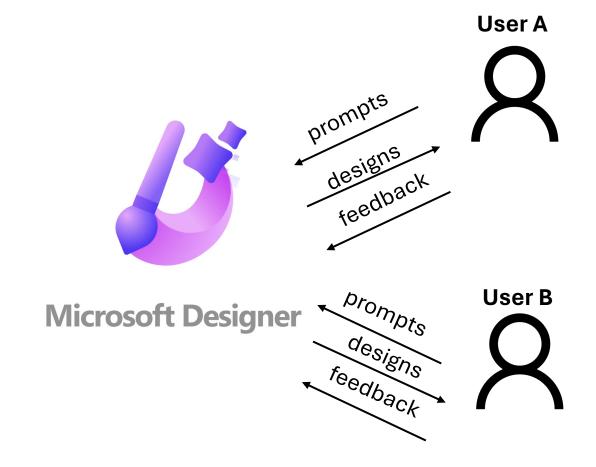
Privately Aligning Language Models with Reinforcement Learning

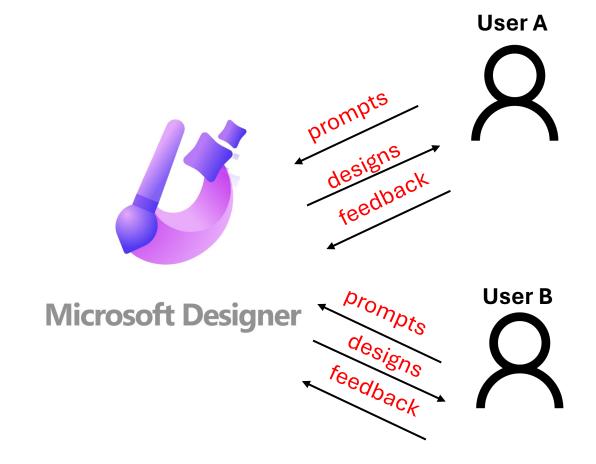
Fan Wu¹, Huseyin A. Inan², Arturs Backurs³, Varun Chandrasekaran¹, Janardhan Kulkarni³, Robert Sim²

¹University of Illinois Urbana-Champaign, ²M365 Research, ³Microsoft Research

Motivation – the designer app

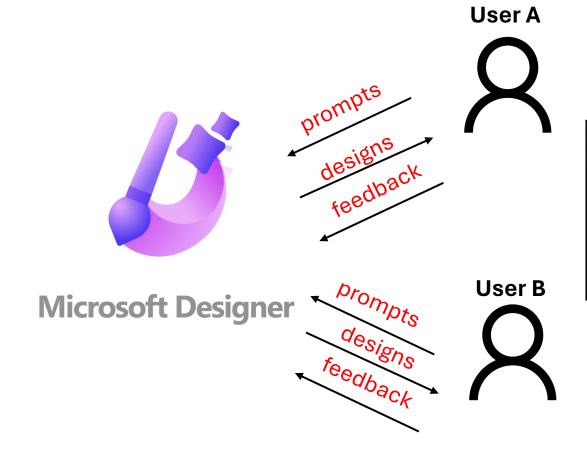


Motivation – the designer app



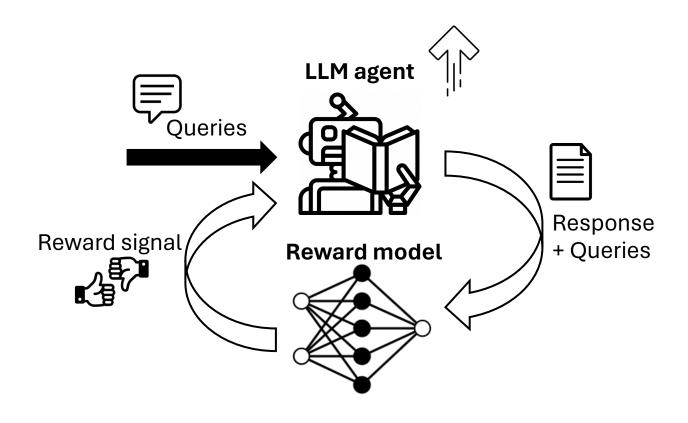
Eyes-off private data!

Motivation – the designer app



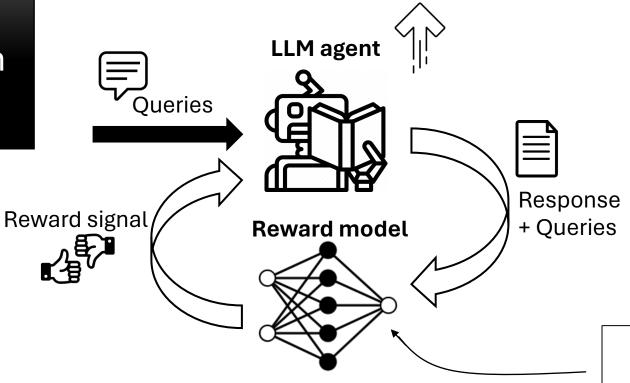
PRIVATELY align with HUMAN PREFERENCE

Aligning LLM via RL



Two paradigms

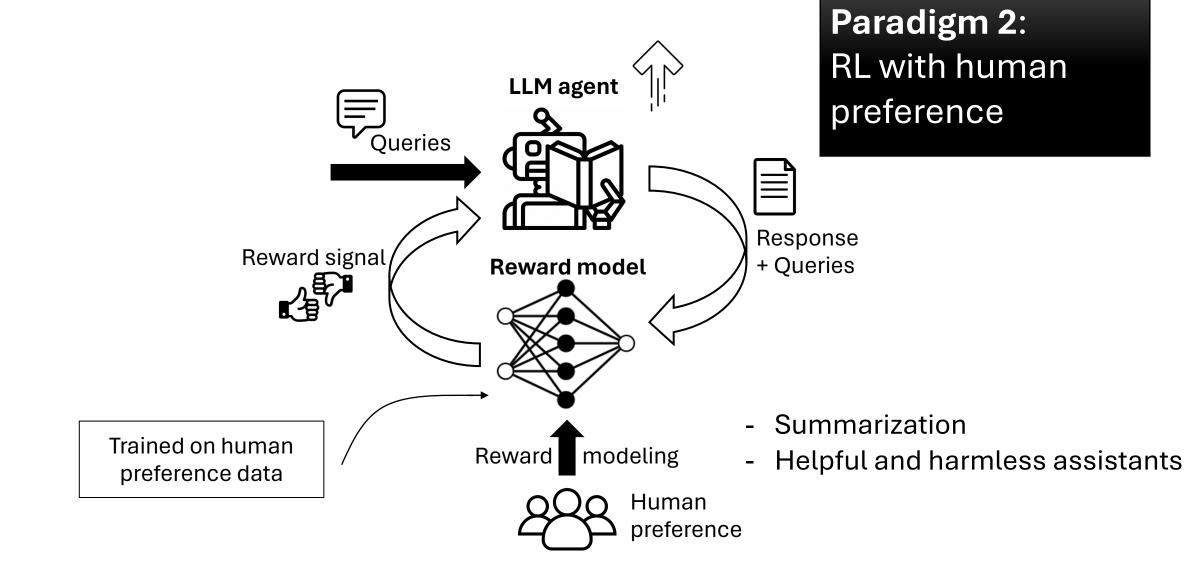
Paradigm 1: RL without human in the loop



Public pre-trained classifiers

- Sentiment tuning
- Toxicity reduction

Two paradigms



Differ in whether the **alignment objective** is easy to **characterize**

Two paradigms

Paradigm 2: Paradigm 1: RL with human LLM agent RL without human preference in the loop Queries Response Reward signal **Reward model** + Queries Public pre-trained classifiers Trained on human (paradigm 1) modeling Reward preference data (paradigm 2) Human preference!

Differential privacy

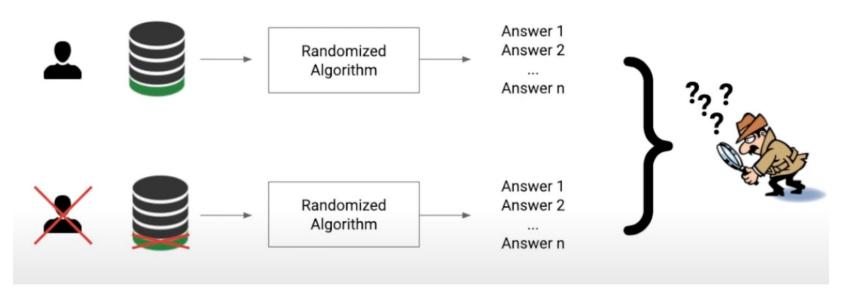


Fig. an illustration of differential privacy. Image from https://youtu.be/YRVBSx0mpO8?si=aHO_sDlZFLHmS9k0

Definition 1 $((\epsilon, \delta)$ -DP (Dwork & Roth, 2014)). A randomized algorithm \mathcal{M} achieves (ϵ, δ) -DP, if for any neighboring datasets D_1 and D_2 (differing in at most one entry) and for any $S \in Range(\mathcal{M})$,

$$\Pr(\mathcal{M}(D_1) \in S) \le e^{\epsilon} \Pr(\mathcal{M}(D_2) \in S) + \delta.$$
 (3)

Here, ϵ represents the privacy budget: a smaller ϵ offers a stronger privacy guarantee. δ accounts for the probability that \mathcal{M} violates ϵ -DP.

Differential privacy in language models

Published as a conference paper at ICLR 2022

LARGE LANGUAGE MODELS CAN BE

STRONG

Differentially Private Fine-tuning of Language Models*

Xuechen Li¹,

¹Stanford Uni
{lxuechen

Da Yu[†] Saurabh Naik [‡]
Gautam Kamath[¶] J
Lukas Wutschi

Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe

Xiang Yue^{1,*}, Huseyin A. Inan², Xuechen Li³, Girish Kumar⁵, Julia McAnallen⁴, Hoda Shajari⁴, Huan Sun¹, David Levitan⁴, and Robert Sim²

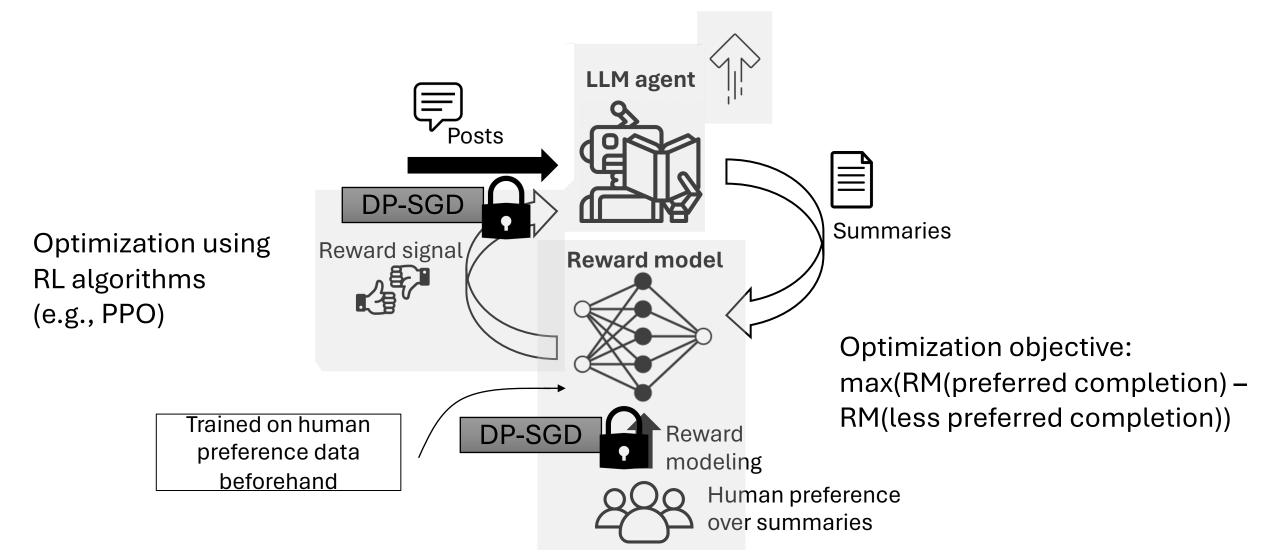
¹The Ohio State University, ²Microsoft Research, ³Stanford University, ⁴Microsoft, ⁵UC Davis

{yue.149, sun.397}@osu.edu

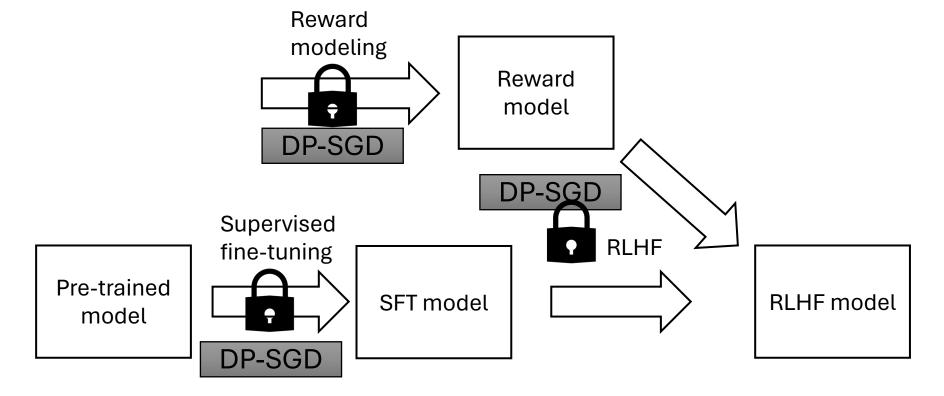
lxuechen@cs.stanford.edu gkum@ucdavis.edu

{Huseyin.Inan,Julia.McAnallen,hodashajari,David.Levitan,rsim}@microsoft.com

Scenario 2: summarization



Scenario 2: summarization – detailed procedures



Privacy analysis:

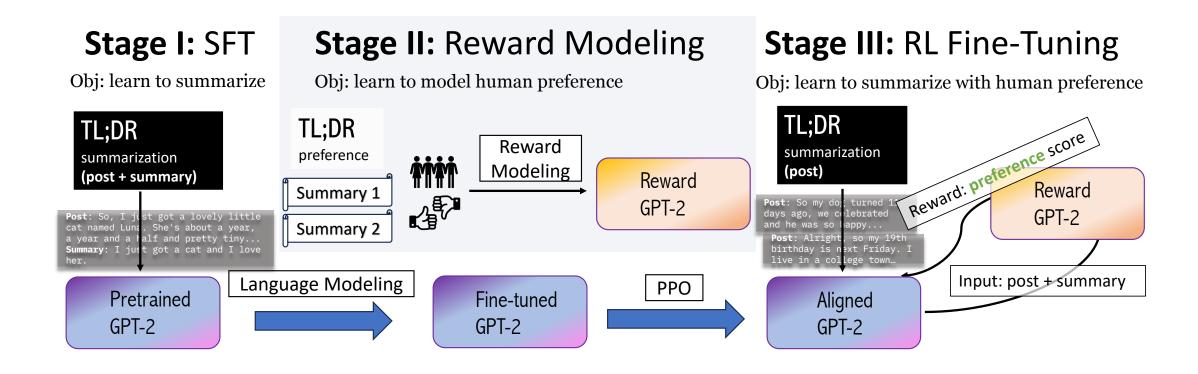
- disjoints datasets for different stages

- $\varepsilon_1, \varepsilon_2, \varepsilon_3$ for the three stages

- Overall consumption: $\max(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ by parallel composition

(For simplicity we take $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 4$)

Scenario 2: summarization – pipeline



Scenario 2: summarization – results

- Generation model:
 - gpt2 model family
- Reward model:
 - gpt2

Table 2: The average reward score (r) and ROUGE-L score (R-L)

Model	$\epsilon=0$ Pre-trained			$\epsilon=1$		$\epsilon=2$		$\epsilon=4$		$\epsilon=8$		$\epsilon=\infty$	
	\overline{r}	R-L		\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L
GPT-2	0.05	8.26	SFT	0.44	11.45	0.48	11.84	0.50	12.30	0.49	12.45	0.63	14.48
			Aligned	0.22	10.41	0.53	11.44	0.68	12.33	0.69	11.74	1.53	14.17
GPT-2 medium	0.11	8.67	SFT	0.68	12.80	0.66	13.07	0.65	13.30	0.65	13.5	0.70	14.30
			Aligned	0.59	12.86	0.92	13.26	0.92	13.44	0.86	13.79	1.76	13.17
GPT-2 large	-0.06	10.34	SFT	0.51	14.98	0.51	14.86	0.52	15.14	0.51	15.04	0.54	15.53
			Aligned	0.40	14.75	1.14	14.58	1.06	13.88	0.93	14.37	1.49	14.64

Scenario 2: summarization – results

- Generation model:
 - gpt2 model family
- Reward model:
 - gpt2

Observation 2:

Non-private RLHF >> PT

DP leads to only mild degradation

Table 2: The average reward score (r) and ROUGE-L score (R-L)

Model	$\epsilon=0$ Pre-trained			$\epsilon=1$		$\epsilon=2$		$\epsilon=4$		$\epsilon=8$		$\epsilon=\infty$	
	\overline{r}	R-L		\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L	\overline{r}	R-L
GPT-2	0.05	8.26	SFT	0.44	11.45	0.48	11.84	0.50	12.30	0.49	12.45	0.63	14.48
			Aligned	0.22	10.41	0.53	11.44	0.68	12.33	0.69	11.74	1.53	14.17
GPT-2 medium	0.11	8.67	SFT	0.68	12.80	0.66	13.07	0.65	13.30	0.65	13.5	0.70	14.30
			Aligned	0.59	12.86	0.92	13.26	0.92	13.44	0.86	13.79	1.76	13.17
GPT-2 large	-0.06	10.34	SFT	0.51	14.98	0.51	14.86	0.52	15.14	0.51	15.04	0.54	15.53
			Aligned	0.40	14.75	1.14	14.58	1.06	13.88	0.93	14.37	1.49	14.64

Scenario 2: summarization – case studies

Post:

I'll keep this short. I'm teaching abroad and met this girl in teaching training. We ha ve similar geeky interests so we meet up every couple months for a weekend of cit y fun together. She IS very fun except for an ongoing habit negative commentary f or EVERYTHING. I don't think she realizes she does it and it's her way of making co nversation. For example if I asked how her food was she'd tell me with a smile th at it was fine but this place is too crowded food tastes weird too expensive even if i t was a restaurant she recommended. Now imagine that with EVERYTHING. I've lit erally never heard her talk about something without having to bring up a flaw it has . NOTHING can just be GOOD. After a weekend it drives me up a wall. A few times I've almost joked You ever realize you're kind of a debbie downer but I think this i s too harsh since we're not super close. Should I just suck it up as an annoying ch aracter trait. It really pisses me off when she happily shits on something I suggest. ed but again I think she's totally unaware of her constant criticizing. We're both pr etty blunt people you can probably tell she is so I think I canbe a bit direct. How d o I hint to cut back on the bitching Or do I grin and bear it every few months

PT model generated summary:

TIP: Stress listening to everyone. Hinting clothin g that's going to make you look like shit. Don't r un away or whine. Varried someone else before and they just lectured me with their take on ma ngamedoes. Learn to admit when you're wrong. Make outlandish claims as long as you use inn uendo and personal attacks. Tricking your way i nto conversation is way more efficient than ack nowledging and waiting for someone to underst and you. Get your friend's web password

SFT model generated summary:

I know I'm annoying but I fear she's enjoying the same criticism that I do. How do I stop

RLHF model generated summary:

Girl is bad at communicating and constantly s hits on everything I suggest. How do I gently hint to cut her down without prompting?

Conclusions

Paradigm 2: Paradigm 1: RL with human LLM agent RL without human preference in the loop Queries Response Reward signal, **Reward model** + Queries Public pre-trained classifiers (paradigm 1) Trained on human Reward modeling preference data (paradigm 2) Human preference!

Thank you!

Scan to visit the paper!

