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Table 9: Results on WMT21 translation sets. We observe improvement over both PaLM and the Google Translate
production system according to our primary metric: MQM human evaluations by professional translators.

Chinese�!English English�!German
BLEURT " MQM (Human) # BLEURT " MQM (Human) #

PaLM 67.4 3.7 71.7 1.2
Google Translate 68.5 3.1 73.0 1.0
PaLM 2 69.2 3.0 73.3 0.9

Table 10: Results on the FRMT (Few-shot Regional Machine Translation) benchmark of dialect-specific translation.
Inputs are 5-shot exemplars and scores are computed with BLEURT.

Portuguese Portuguese Chinese Chinese
(Brazil) (Portugal) (Mainland) (Taiwan)

PaLM 78.5 76.1 70.3 68.6
Google Translate 80.2 75.3 72.3 68.5
PaLM 2 81.1 78.3 74.4 72.0

WMT21 Experimental Setup We use the recent WMT 2021 sets (Akhbardeh et al., 2021) to guard against train/test
data leakage, and to facilitate comparison with the state of the art. We compare PaLM 2 against PaLM and Google
Translate. For PaLM and PaLM 2, we prompt the model with 5-shot exemplars; for Google Translate, we send the
source text directly to the model, as this is the format it expects.

We use two metrics for evaluation:

1. BLEURT (Sellam et al., 2020): We use BLEURT9 (Sellam et al., 2020) as a SOTA automatic metric instead of
BLEU (Papineni et al., 2002) due to BLEU’s poor correlation with human judgements of quality, especially for
high-quality translations (Freitag et al., 2022).

2. MQM (Freitag et al., 2021): To compute Multidimensional Quality Metrics (MQM), we hired professional
translators (7 for English-to-German, 4 for Chinese-to-English) and measured translation quality with a document
context version of MQM that mimics the setup proposed in Freitag et al. (2021), which includes the same error
categories, severity levels and error weighting schema. Following Freitag et al. (2021), we assign the following
weights: 5 for each major error, 1 for each minor error, and 0.1 for minor punctuation errors. The final system-level
score is an average over scores from all annotations.

We present the results of an MQM study for Chinese-to-English and English-to-German in Table 9. MQM represents
the average errors per segment, with lower numbers indicating better results. We observe that PaLM 2 improves quality
both over PaLM and Google Translate.

Regional translation experimental setup We also report results on the FRMT benchmark (Riley et al., 2023) for
Few-shot Regional Machine Translation. By focusing on region-specific dialects, FRMT allows us to measure PaLM
2’s ability to produce translations that are most appropriate for each locale—translations that will feel natural to each
community. We show the results in Table 10. We observe that PaLM 2 improves not only over PaLM but also over
Google Translate in all locales.

Potential misgendering harms We measure PaLM 2 on failures that can lead to potential misgendering harms in
zero-shot translation. When translating into English, we find stable performance on PaLM 2 compared to PaLM, with
small improvements on worst-case disaggregated performance across 26 languages. When translating out of English into

9We used BLEURT version 0p2p1 for our measurements.

18

[Google 23] PaLM 2 Technical Report.



Translation capability from monolingual data

f1
f2
e
…

Transformer

x1:k
LLM 

Learning 

xk+1:n

Table 9: Results on WMT21 translation sets. We observe improvement over both PaLM and the Google Translate
production system according to our primary metric: MQM human evaluations by professional translators.

Chinese�!English English�!German
BLEURT " MQM (Human) # BLEURT " MQM (Human) #

PaLM 67.4 3.7 71.7 1.2
Google Translate 68.5 3.1 73.0 1.0
PaLM 2 69.2 3.0 73.3 0.9

Table 10: Results on the FRMT (Few-shot Regional Machine Translation) benchmark of dialect-specific translation.
Inputs are 5-shot exemplars and scores are computed with BLEURT.

Portuguese Portuguese Chinese Chinese
(Brazil) (Portugal) (Mainland) (Taiwan)

PaLM 78.5 76.1 70.3 68.6
Google Translate 80.2 75.3 72.3 68.5
PaLM 2 81.1 78.3 74.4 72.0

WMT21 Experimental Setup We use the recent WMT 2021 sets (Akhbardeh et al., 2021) to guard against train/test
data leakage, and to facilitate comparison with the state of the art. We compare PaLM 2 against PaLM and Google
Translate. For PaLM and PaLM 2, we prompt the model with 5-shot exemplars; for Google Translate, we send the
source text directly to the model, as this is the format it expects.

We use two metrics for evaluation:

1. BLEURT (Sellam et al., 2020): We use BLEURT9 (Sellam et al., 2020) as a SOTA automatic metric instead of
BLEU (Papineni et al., 2002) due to BLEU’s poor correlation with human judgements of quality, especially for
high-quality translations (Freitag et al., 2022).

2. MQM (Freitag et al., 2021): To compute Multidimensional Quality Metrics (MQM), we hired professional
translators (7 for English-to-German, 4 for Chinese-to-English) and measured translation quality with a document
context version of MQM that mimics the setup proposed in Freitag et al. (2021), which includes the same error
categories, severity levels and error weighting schema. Following Freitag et al. (2021), we assign the following
weights: 5 for each major error, 1 for each minor error, and 0.1 for minor punctuation errors. The final system-level
score is an average over scores from all annotations.

We present the results of an MQM study for Chinese-to-English and English-to-German in Table 9. MQM represents
the average errors per segment, with lower numbers indicating better results. We observe that PaLM 2 improves quality
both over PaLM and Google Translate.

Regional translation experimental setup We also report results on the FRMT benchmark (Riley et al., 2023) for
Few-shot Regional Machine Translation. By focusing on region-specific dialects, FRMT allows us to measure PaLM
2’s ability to produce translations that are most appropriate for each locale—translations that will feel natural to each
community. We show the results in Table 10. We observe that PaLM 2 improves not only over PaLM but also over
Google Translate in all locales.

Potential misgendering harms We measure PaLM 2 on failures that can lead to potential misgendering harms in
zero-shot translation. When translating into English, we find stable performance on PaLM 2 compared to PaLM, with
small improvements on worst-case disaggregated performance across 26 languages. When translating out of English into

9We used BLEURT version 0p2p1 for our measurements.

18

[Google 23] PaLM 2 Technical Report.

[Jiao et al. 23] Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine



Figure 4: Number of mined translation pairs within
PaLM’s training instances. PaLM consumes thousands
of translation pairs across (at least) 44 languages.

translation (r=0.938) counts. This strong correla-
tion implies that, when working at scale, we can
predict the bilingual and translation sizes for a
given language (within an error rate) by simply
counting monolingual instances.

3.4 Discovering Natural Prompts
After identifying a smaller-scale set consisting of
training instances that contain translation pairs, we
further manually inspect them to understand how
the translation task is naturally modeled by PaLM.
We find that sentence-level translations are pre-
sented within a training instance in three ways. The
majority of them appear across paragraphs and do
not follow a canonical pattern. Among the remain-
der, we noticed two canonical patterns: translation
pairs that belong to stacked translated paragraphs
(e.g., {x1, x2, y1, y2}) and interleaved translations
where a sentence and each translation are adjacent
to each other (e.g., {x1, y1, x2, y2}). Among the
latter, we saw an opportunity to extract natural
prompts automatically. We do so by analyzing
the prefixes of the translation pairs mined in §3.3.
Drawing on our manual observations, we mine the
most frequent prefixes per language pair that fol-
low a simple colon prompt format: any sequence
of non-whitespace characters followed by a colon.
Finally, we manually filter the automatically mined

(a) r = 0.944

(b) r = 0.938

Figure 5: Pearson correlations between counts of
monolingual instances with (a) bilingual and (b) trans-
lation instances. The number of bilingual and transla-
tion instances correlates strongly with the number of
monolingual instances.

Default Code Native Translation
HIGH 1,207 506 781 831
MEDIUM 219 62 136 352
LOW 38 0 64 122
ALL 1,464 568 981 1,305

Table 1: Data-driven prompt counts within PaLM’s
translation pairs, grouped by resourcedness.

prefix lists to look for consistent natural prompt
patterns across languages.

Findings Table 1 presents the results of our
prompt discovery module followed by manual fil-
tering to extract plausible translation prefixes. First,
we found empirically that one of the most frequent
translation prompts that naturally arises in the data
is the default prompt adopted by most MT research
with LLMs: source and target language names
in English followed by a colon (e.g., “French:”).
We also found three alternative prompts that are
frequently presented within incidental translation
pairs: i) code: source and target ISO language
codes (e.g., “FR:”), ii) native: source and target
language names in their respective languages (e.g.,
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Why LLMs enable Translation capability?

• Monolingual data contains some parallel data

4.2 Extrinsic Evaluation of Translation Pairs

It is one thing to report counts of translation pairs
mined from bilingual instances, but is the result-
ing bitext of high quality? We adopt the paral-
lel text quality evaluation framework of the WMT
Shared Task on Parallel Corpus Filtering and Align-
ment (Koehn et al., 2020) and train supervised neu-
ral machine translation models from scratch on the
mined translations. This allows us to jointly assess
the quality of PaLM’s translation content and our
extraction heuristics. We focus this analysis on
FR!EN, PaLM’s highest-resource language pair.

Data For PaLM translation pairs, we explore a
number of thresholds on the LABSE distance. To
put our results in perspective, we additionally train
a model on all pairs from the WMT14 FR!EN
task (Bojar et al., 2014) and on random samples
thereof to establish fair data comparison points at
notable LABSE thresholds. Sentence counts for all
conditions are shown in Table 3.

Architecture We adopt the 6-layer encoder-
decoder Transformer Base (Vaswani et al., 2017)
architecture, with minimal hyper-parameter tun-
ing. Shared sentence piece (Kudo and Richard-
son, 2018) vocabularies with 32K tokens are con-
structed from bitext for each scenario. Dropout is
set to 0.3 for all systems except for the full WMT
system, which uses 0.1. Systems are trained up to
450K steps with a batch size of 1,024. Checkpoints
are selected by FLORES dev BLEU.

Findings Table 3 presents the results of our anal-
ysis. In general, the mined translation pairs from
our analysis pipeline provide useful signal for train-
ing supervised MT systems with reasonable trans-
lation quality (i.e., 37 to 38 BLEU across various
thresholds, compared to 41 that we achieve using
40M translations from available WMT parallel cor-
pora). Moreover, these results confirm that 0.6
seems to be the right threshold for detecting trans-
lation pairs that are useful, or at least not harmful
in the presence of other positive signals (i.e., at 0.6
we are within 1 BLEU point of a system trained on
the same amounts of WMT parallel text).

4.3 Ablating Incidental Bilingualism

We now explore the impact of bilingualism on the
translation capabilities of PaLM. To do so, we con-
duct smaller-scale experiments by training 1B and
8B parameter models on different training samples

t #TRANSLATIONS PaLM (mined) WMT
N/A 40,836,876 7 42.0
0.90 9,084,429 33.7
0.80 7,056,441 35.7
0.70 4,874,173 36.4
0.60 3,341,187 37.3 38.1
0.50 2,474,703 37.2
0.40 1,948,820 37.1
0.30 1,477,535 38.4 36.5
0.20 906,937 37.8
0.15 549,705 36.3

Table 3: BLEU scores for FR!EN NMT models trained
on various translation pairs, evaluated on FLORES de-
vtest. t corresponds to the LABSE threshold. PaLM-
mined translation pairs provide useful signal for train-
ing supervised NMT models.

to measure the effect of removing various types of
multilingual data.

Architecture Our 1B and 8B models are scaled-
down versions of PaLM with small changes. Like
PaLM, each is a decoder-only model trained with
a causal language modeling objective, using a
dense transformer architecture and a sentence piece
tokenizer (Kudo and Richardson, 2018) that re-
tains spacing information. Unlike PaLM, we do
not share key and value tensors across attention
heads (Shazeer, 2019), which should affect only
decoding speed. We include a hyper-parameter
summary in Table 6 in Appendix E. Also, we use a
smaller vocabulary size of 128K tokens compared
to PaLM’s 256K tokens, a concession to fit the
models onto available hardware. Both 1B and 8B
train on examples of 2,048 tokens with a batch size
of 512 for 100K steps. Note that using the same
number of examples for both scales means that
the 8B models are likely under-trained; however,
holding data quantity constant is useful for directly
measuring the effect of model scale.

Data To simulate PaLM’s data conditions with
smaller models, we begin by partitioning PaLM’s
training instances into four non-overlapping groups:
ENG: English instances, NEN: non-English (ex-
cluding bilingual) instances, BIL: bilingual (ex-
cluding translation) instances, and TRA: transla-
tion instances. We then merge instances within
their groups into 2,048 token examples. Count-
ing examples from each group allows us to de-
termine the full data’s implicit mixture of these
groups: ENG: 84.4%; NEN: 14.1%; BIL: 1.0%;
TRA: 0.5%. These should not match the instance-
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• The included parallel data is able to train a 

strong NMT model. 

Under review as a conference paper at ICLR 2024

3 SENTENCE LEVEL AND WORD LEVEL BILINGUALISM IN CORPUS

Usually derived from the Common Crawl1 with a sophisticated data filtering pipeline, existing multi-
lingual corpora such as mC4 (Xue et al., 2021), CC-100 (Conneau et al., 2020a), ROOTS (Laurençon
et al., 2022b) and OSCAR (Ortiz Su’arez et al., 2019) are composed of multiple monolingual splits
with their languages detected by language classification tools (Joulin et al., 2016). Nevertheless, due
to the imperfections of the language classifier (Blevins & Zettlemoyer, 2022), a monolingual split
may inadvertently contain some unintentional bilingual data. In this study, we focus on unintentional
bilingualism between English and Chinese and identify three types of unintentional bilingualism
present in three widely used multilingual corpora:

Type Example

Sentence 
Alignment 

This news, like a light as an indescribable speed, In the blink of 
an eye it spread throughout the entire Martial Dragon 
Continent. 
这个消息，如同光芒一般，以无法形容的速度，眨眼间就传
遍了整个龙武大陆。
This news was like a bullet, landed on the tranquil lake in the 
middle, instantly exploded!

Word 
Alignment

Beijing will procure RMB 80 million in social organization 
services. 
Beijing News (新京报), January 28, 2013

Code-
Switching

上一篇(Previous Article)：New Polio Immunization Drive to 
Start in Nigeria’s
下一篇(Next Article)：Hong Kong's Top Health Official Resigns 
Over SARS

Table 1: Examples of three types of unintentional bilin-
gualism found in mC4. For sentence alignment and
word alignment, the text in italics is a parallel bilin-
gualism in English and Chinese. For code-switching,
the text highlighted in gray is our self-added transla-
tion for illustration.

The first case is sentence alignment (SA),
wherein a sentence and its translation co-
exist within close proximity in a docu-
ment. Sentence alignment data consti-
tutes a form of sentence-level bilingualism

Analogously, word alignment (WA) per-
tains to the co-occurrence of one or more
words (though not an entire sentence) and
their translations within close proximity in
a single document. Both sentence align-
ment and word alignment involve bilin-
gual translation and differ solely in the
granularity of translation. Additionally,
we identify code-switching (CS), which
specifically refers to the co-occurrence of
two languages within close proximity in a
document, where the content in the two
languages is semantically related rather
than bearing a direct translation relation-
ship. Both word alignment and code-
switching are regarded as word-level bilin-

gualism. Table 1 showcases three kinds of
unintentional bilingualism.

To excavate three types of unintentional
bilingualism, we develop a data mining pipeline. Briefly, to identify and gather unintentional bilin-
gualism from a monolingual Chinese split: (1) We first search for alphabetic-composed fragments
in each document with a regular expression. (2) The fragments recognized to be English by an
off-the-shelf language detection tool (Joulin et al., 2016) are then translated into Chinese with an
external commercial translation system (Huang et al., 2021). (3) Finally, we measure the similarity
between the obtained translation and the nearby context of the found fragments and categorize the
fragment together with its nearby context into three types of unintentional bilingualism accordingly.
Aside from collecting unintentional bilingualism, for the purpose of experimental comparison, we
also gather “pure” monolingual Chinese (English) corpus by meticulously eliminating unintentional
bilingualism as much as possible. More specifically, we again use regular expressions to remove
any English letters (Chinese Characteristics) from Chinese corpus (English corpus) in mC4. More
details can be found in Appendix A.

The distribution of unintentional bilingualism in three corpora is depicted in Figure 1. As evidenced
by the figure, unintentional bilingualism only accounts for a very small proportion (less than 5%)
in the entire corpus. Nonetheless, given the vast scale of the corpus, the absolute quantity of con-
taminated documents is indeed non-trivial. Furthermore, as a common attribute spanning the three
corpora, word alignment and code-switching predominantly comprise the primary components of
unintentional bilingualism.

1
https://commoncrawl.org/
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Why LLMs enable Translation capability?

[Google ACL 23] Searching for Needles in a Haystack: On the Role of Incidental Bilingualism in PaLM’s Translation Capability.

Models
EN-XX XX-EN

FULL -PAR FULL -PAR
1B 30.9 18.7 12.5 5.1

7B 47.7 44.7 24.0 22.2

• However, LLM still yields strong translation capability without parallel data.

BLEU score of PaLM through 5-shot learning

• Why LLM capture translation capability without parallel data?

• This is the focus of our work!



Possible factors on translation capability of LLM 
• Some data sources may be related to translation capability

• SA: sentence alignment

• WA: word alignment

• CS: code-switching
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Dataset Language Test set Example pool

WMT21 English-Chinese newstest2021 (1948/1002) newstest{2017,2018,2019}
English eng Latn.devtest (1012) eng Latn.dev (997)
Chinese zho Hans.devtest (1012) zho Hans.dev (997)
Catalan cat Latn.devtest (1012) cat Latn.dev (997)

Eastern Panjabi pan Guru.devtest (1012) pan Guru.dev (997)
Igbo ibo Latn.devtest (1012) ibo Latn.dev (997)

FLORES-200

Tswana tsn Latn.devtest (1012) tsn Latn.dev (997)

Table 2: Statistics of our evaluation benchmarks. Numbers in brackets denote the number of in-
stances.

Figure 1: The proportion of documents con-
taining three types of unintentional bilingual
text in three corpora. The proportion is esti-
mated by subset sampling.

mC4.en mC4.zh

sentence
alignment

# Doc 210,931 2,462
# Seq 355,320 432

word
alignment

# Doc 658,643 1,972,764
# Seq 500,550 659,456

code-
switching

# Doc 2,021,502 5,086,373
# Seq 903,810 997,376

Table 3: The statistics of our mined un-
intentional bilingual text from mC4.en and
mC4.zh. We concatenate all the unin-
tentional bilingual data together with their
nearby context in documents to form input
sequences of fixed length. More details could
be found in Appendix A.

4 METHODOLOGY TO QUANTIFY TRANSLATION CAPABILITY

To quantify and analyze the contribution of unintentional bilingual data, Briakou et al. (2023) pri-
marily extract sentence alignment instances from the PaLM pre-training corpus, convert them into
translation pairs (x, y), thereby train an external sequence-to-sequence NMT model and draw com-
parison with another NMT model trained with official WMT parallel data to verify the effectiveness
of sentence alignment data. Unfortunately, the strategy is not applicable when investigating the im-
pact of other types of unintentional bilingualism since we can hardly convert word alignment data
or code-switching data into translation pairs (x, y) to train an external NMT system.

Key Idea Alternatively, we do not train an external NMT model but directly train an LLM on
different data sources and evaluate their performances as follows:

1. Train an LLM on our collected X data. X is one of three types of unintentional bilingualism, i.e.,
sentence alignment (SA), word alignment (WA), and code-switching (CS).
2. Train another LLM on a X-rand dataset as a comparison to X. X-rand data is randomly sam-
pled from the original C4.en and C4.zh with the same number of examples as X. Note that it is
contaminated with unintentional bilingualism and contains SA, WA and CS as shown in Figure 1.
3. Compare different LLMs (X vs. X-rand) with various metrics to measure their translation quality.

Accordingly, it can be inferred that: 1) if the LLM trained on X data performs better than that on X-
rand data, then X contributes to LLM’s translation capability; otherwise, X may have little influence
on translation ability. 2) if the LLM trained on X1 performs better than the models trained on X2,
then we can conclude that X1 contributes more to LLM’s translation capability than X2 (X1 or X2

represents one of SA, WA or CS) and vice versa.

Implementation However, a naive implementation of the above strategy is rather resource-
intensive and infeasible in practice, as it involves the pre-training of multiple LLMs corresponding

4



Naïve Method and Challenges

• Challenge: it is too expensive!
• Training a BLOOM-1b requires several months on 300+ A100 GPUs.

• Efficient methods?

Full-WA

Learning 
Transformer

x1:k

xk+1:n

Re-training a 1b or 7b model on the corpus excluding particular data (e.g. 
word alignment) ?

Models
EN-XX

FULL Full-WA
1B 30.9 xx

7B 47.7 xx



Efficient Methods

WA

• Finetuning an off-the-shelf LLM model

• Finetuning the model on WA (or CS)

• Finetuning the model on random data (with the same 

size)

• Evaluating both models in terms of translation quality

• Training small models from scratch as simulation

• Training 560m model on WA (or CS)

• Training 560m model on random data

• Evaluating both models in terms of translation quality



Experiments — Data Preparation

Under review as a conference paper at ICLR 2024
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of sentence alignment data. Unfortunately, the strategy is not applicable when investigating the im-
pact of other types of unintentional bilingualism since we can hardly convert word alignment data
or code-switching data into translation pairs (x, y) to train an external NMT system.

Key Idea Alternatively, we do not train an external NMT model but directly train an LLM on
different data sources and evaluate their performances as follows:

1. Train an LLM on our collected X data. X is one of three types of unintentional bilingualism, i.e.,
sentence alignment (SA), word alignment (WA), and code-switching (CS).
2. Train another LLM on a X-rand dataset as a comparison to X. X-rand data is randomly sam-
pled from the original C4.en and C4.zh with the same number of examples as X. Note that it is
contaminated with unintentional bilingualism and contains SA, WA and CS as shown in Figure 1.
3. Compare different LLMs (X vs. X-rand) with various metrics to measure their translation quality.

Accordingly, it can be inferred that: 1) if the LLM trained on X data performs better than that on X-
rand data, then X contributes to LLM’s translation capability; otherwise, X may have little influence
on translation ability. 2) if the LLM trained on X1 performs better than the models trained on X2,
then we can conclude that X1 contributes more to LLM’s translation capability than X2 (X1 or X2

represents one of SA, WA or CS) and vice versa.

Implementation However, a naive implementation of the above strategy is rather resource-
intensive and infeasible in practice, as it involves the pre-training of multiple LLMs corresponding
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Dataset Language Test set Example pool

WMT21 English-Chinese newstest2021 (1948/1002) newstest{2017,2018,2019}
English eng Latn.devtest (1012) eng Latn.dev (997)
Chinese zho Hans.devtest (1012) zho Hans.dev (997)
Catalan cat Latn.devtest (1012) cat Latn.dev (997)

Eastern Panjabi pan Guru.devtest (1012) pan Guru.dev (997)
Igbo ibo Latn.devtest (1012) ibo Latn.dev (997)

FLORES-200

Tswana tsn Latn.devtest (1012) tsn Latn.dev (997)

Table 2: Statistics of our evaluation benchmarks. Numbers in brackets denote the number of in-
stances.

Figure 1: The proportion of documents con-
taining three types of unintentional bilingual
text in three corpora. The proportion is esti-
mated by subset sampling.

mC4.en mC4.zh
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alignment

# Doc 210,931 2,462
# Seq 355,320 432

word
alignment

# Doc 658,643 1,972,764
# Seq 500,550 659,456

code-
switching

# Doc 2,021,502 5,086,373
# Seq 903,810 997,376

Table 3: The statistics of our mined un-
intentional bilingual text from mC4.en and
mC4.zh. We concatenate all the unin-
tentional bilingual data together with their
nearby context in documents to form input
sequences of fixed length. More details could
be found in Appendix A.
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• Training data from mC4 dataset

• SA: sentence alignment

• WA: word alignment

• CS: code-switching

• Evaluation datasets

• WMT21

• FLORES-200



Experiments — Settings

• Finetuning

• Using the bloom models 7b and 560m as initialization

• Finetuning on SA/WA/CS with one epoch for fair comparison

• Training a small model for simulation

• Training a 560m model from scratch

• Training the model with a fixed number of updates
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ZH-EN EN-ZH
3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-7.1b 59.58 37.21 60.38 38.01 79.84 57.87 80.34 58.58

SA 62.05? 41.24? 61.79? 40.47? 79.77 58.32? 80.18 58.64
SA-rand 59.13 37.60 59.28 37.73 79.47 57.48 79.99 58.33

WA 58.36? 36.34? 58.15? 35.75? 79.59 57.61 80.11? 58.46
WA-rand 56.21 32.91 56.51 33.32 79.48 57.42 79.86 58.14

CS 60.00? 38.59? 59.54? 37.82? 78.59 56.63 79.48 57.53
CS-rand 56.64 33.39 57.50 34.44 79.20 57.34 80.24 58.30

Table 4: Translation performance for post-training BLOOM-7.1b. CS = code-switching, WA = word
alignment, SA = sentence alignment. Numbers marked with asterisk are significant improvements
(t-test, p < 0.05) compared with the second-best model in the same block.

ZH-EN EN-ZH
3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-560m 53.62 34.00 54.55 35.14 66.84 43.23 67.88 44.40

SA 61.55? 43.14? 61.57? 43.04? 69.27? 46.32? 69.98? 47.14?

SA-rand 54.87 36.41 55.26 36.60 61.80 38.58 63.71 40.33

WA 60.99? 42.09? 60.77? 41.72? 71.82? 49.03? 72.47? 50.24?

WA-rand 58.47 37.83 57.47 36.39 67.55 43.44 68.23 44.27

CS 59.02? 39.66? 59.22? 39.90? 68.24 45.41 69.35 46.60?
CS-rand 58.43 38.56 57.95 37.49 68.53 44.70 69.26 45.27

Table 5: Translation performance for post-training smaller-scale LLM (BLOOM-560m). CS = code-
switching, WA = word alignment, SA = sentence alignment. Numbers marked with asterisk are
significant improvements (t-test, p < 0.05) compared with the second best model in the same block.

pre-existing translation capabilities possessed by the original BLOOM-7.1b.3 In addition, 5-shot
performance is usually better than 3-shot ones in general, which echoes prior findings (Zhang et al.,
2023a) that more in-context examples usually help.

Therefore, we conduct similar post-training experiments on top of a smaller LLM (i.e., BLOOM-
560m). Table 5 summarizes the experiment results. From this table, we can observe that both SA
and WA significantly outperform their X-rand counterparts by a large margin in all cases, demon-
strating that both SA and WA substantially contribute to LLM’s translation ability. Notably, to our
surprise, we find the effect of word alignment data is comparable or even superior to that of sentence
alignment. We gauge one possible reason is that the number of WA examples contained in the pre-
training corpus greatly exceeds the number of SA examples, as shown in Table 3. This unexpected
discovery can further be used to elucidate an important phenomenon wherein the LLM’s translation
capability persists when sentence-level bilingualism is excluded from the training corpus — an ob-
servation previously noted in (Briakou et al., 2023) but lacking a clear explanation. In addition, we
also find that CS outperforms CS-rand by a modest margin. This fact indicates that code-switching
data imparts weak translation knowledge to LLMs.

5.3 PRE-TRAINING EXPERIMENT ON BILINGUALISM

Aside from the post-training experiment, we pre-train a self-implemented BLOOM-560m from
scratch with our collected data as the simulation of training LLM. Owing to the constraints of our
computational resources, we are regrettably unable to train a fully-converged BLOOM-560m4 but
alternatively train for a fixed number of updates, resulting in our self-implemented pre-trained mod-
els being incapable of producing meaningful translations upon decoding. As is shown in Table 6,

3We present the results of the original BLOOM-7.1b only for reference but not for a basic baseline to
compare since post-training may incur domain shift or hyper-parameter mismatching and thus lead to inferior
performance than the original BLOOM-7.1b.

4Training a BLOOM-560m necessitates 92.61 days on 32 A100 GPUs.

6

• WA and CS may provide translation signals to LLMs

• WA or CS contains more translation signals than random data

• WA is worse than BLOOM-7.1b
• WA does not contain more translation signals than BLOOM-7.1b

X-random data denotes the same number of examples as X dataset 
randomly sampled from the training data of LLM for X in {SA, WA, CS}
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ZH-EN EN-ZH
3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-7.1b 59.58 37.21 60.38 38.01 79.84 57.87 80.34 58.58

SA 62.05? 41.24? 61.79? 40.47? 79.77 58.32? 80.18 58.64
SA-rand 59.13 37.60 59.28 37.73 79.47 57.48 79.99 58.33

WA 58.36? 36.34? 58.15? 35.75? 79.59 57.61 80.11? 58.46
WA-rand 56.21 32.91 56.51 33.32 79.48 57.42 79.86 58.14

CS 60.00? 38.59? 59.54? 37.82? 78.59 56.63 79.48 57.53
CS-rand 56.64 33.39 57.50 34.44 79.20 57.34 80.24 58.30

Table 4: Translation performance for post-training BLOOM-7.1b. CS = code-switching, WA = word
alignment, SA = sentence alignment. Numbers marked with asterisk are significant improvements
(t-test, p < 0.05) compared with the second-best model in the same block.

ZH-EN EN-ZH
3-shot 5-shot 3-shot 5-shot

COMET BLEURT COMET BLEURT COMET BLEURT COMET BLEURT

BLOOM-560m 53.62 34.00 54.55 35.14 66.84 43.23 67.88 44.40

SA 61.55? 43.14? 61.57? 43.04? 69.27? 46.32? 69.98? 47.14?

SA-rand 54.87 36.41 55.26 36.60 61.80 38.58 63.71 40.33

WA 60.99? 42.09? 60.77? 41.72? 71.82? 49.03? 72.47? 50.24?

WA-rand 58.47 37.83 57.47 36.39 67.55 43.44 68.23 44.27

CS 59.02? 39.66? 59.22? 39.90? 68.24 45.41 69.35 46.60?
CS-rand 58.43 38.56 57.95 37.49 68.53 44.70 69.26 45.27

Table 5: Translation performance for post-training smaller-scale LLM (BLOOM-560m). CS = code-
switching, WA = word alignment, SA = sentence alignment. Numbers marked with asterisk are
significant improvements (t-test, p < 0.05) compared with the second best model in the same block.

pre-existing translation capabilities possessed by the original BLOOM-7.1b.3 In addition, 5-shot
performance is usually better than 3-shot ones in general, which echoes prior findings (Zhang et al.,
2023a) that more in-context examples usually help.

Therefore, we conduct similar post-training experiments on top of a smaller LLM (i.e., BLOOM-
560m). Table 5 summarizes the experiment results. From this table, we can observe that both SA
and WA significantly outperform their X-rand counterparts by a large margin in all cases, demon-
strating that both SA and WA substantially contribute to LLM’s translation ability. Notably, to our
surprise, we find the effect of word alignment data is comparable or even superior to that of sentence
alignment. We gauge one possible reason is that the number of WA examples contained in the pre-
training corpus greatly exceeds the number of SA examples, as shown in Table 3. This unexpected
discovery can further be used to elucidate an important phenomenon wherein the LLM’s translation
capability persists when sentence-level bilingualism is excluded from the training corpus — an ob-
servation previously noted in (Briakou et al., 2023) but lacking a clear explanation. In addition, we
also find that CS outperforms CS-rand by a modest margin. This fact indicates that code-switching
data imparts weak translation knowledge to LLMs.

5.3 PRE-TRAINING EXPERIMENT ON BILINGUALISM

Aside from the post-training experiment, we pre-train a self-implemented BLOOM-560m from
scratch with our collected data as the simulation of training LLM. Owing to the constraints of our
computational resources, we are regrettably unable to train a fully-converged BLOOM-560m4 but
alternatively train for a fixed number of updates, resulting in our self-implemented pre-trained mod-
els being incapable of producing meaningful translations upon decoding. As is shown in Table 6,

3We present the results of the original BLOOM-7.1b only for reference but not for a basic baseline to
compare since post-training may incur domain shift or hyper-parameter mismatching and thus lead to inferior
performance than the original BLOOM-7.1b.

4Training a BLOOM-560m necessitates 92.61 days on 32 A100 GPUs.
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• SA, WA, CS contains more translation signals than BLOOM-560m

• WA provides comparable translation signals to LLMs compared with SA

• CS may provide some translation signals sometimes
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ZH-EN EN-ZH
target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot

SA 149.09 117.69 121.74 123.09 1303.59 523.11? 525.32? 527.93?

SA-rand 85.50 110.85 109.13 109.00 – – – –

WA 115.72 80.58? 81.21? 81.30? 346.65 216.33? 212.53? 212.10?

WA-rand 130.63 154.89 151.66 150.60 489.26 375.24 363.67 363.34

CS 138.36 129.82 131.35 132.37 343.39 270.67? 268.45 273.18
CS-rand 91.34 112.20 109.21 108.21 351.53 281.94 269.61 266.18

Table 7: Translation performance for pre-training smaller-scale LLM (BLOOM-560m) in terms
of perplexity. CS = code-switching, WA = word alignment, SA = sentence alignment. Numbers
marked with an asterisk are significant improvements (t-test, p < 0.05) compared with the second-
best model in the same block; The Numbers underlined are smaller translation perplexity than target
language modeling perplexity. “–” denotes the number is above 2⇥ 103.

the majority of pre-trained models under various data settings exhibit only near-random5 COMET
scores that are much lower than the numbers in Table 5, indicating the potential risk of drawing a
conclusion based solely on the comparison of the rather subpar translations upon decoding.

ZH-EN EN-ZH
COMET BLEURT COMET BLEURT

SA 38.07 18.47 32.54 5.16
SA-rand 23.96 8.48 24.19 2.82

WA 35.96 16.36 41.22 3.73
WA-rand 30.35 6.25 33.29 2.45

CS 39.40 18.71 37.10 6.39
CS-rand 37.45 17.63 37.91 6.49

random 36.15 3.54 31.18 0.73

Table 6: Very weak translation performance
of pre-training BLOOM-560m evaluated on
WMT21 with 5 in-context examples. The
near-random performance suggests the num-
bers might be noisy and thus unreliable.

Alternatively, we use bilingual perplexity with var-
ious numbers of examples (1-shot/3-shot/5-shot) to
measure their translation ability. We also present
the monolingual perplexity of target language mod-
eling (the “target” column in Table), which is ob-
tained by concatenating the ytest into the prompt
outlined in §5.1 and computing the perplexity on
ytest. In contrast, to obtain monolingual perplex-
ity, we solely input the ytest into language models
to compute its perplexity. From the information the-
ory perspective (Xu et al., 2020), when bilingual
perplexity is lower than monolingual perplexity, the
LLM encapsulates positive mutual information be-
tween two languages and is able to employ informa-
tion in source languages, which can be interpreted as
translation capacity to a certain degree. 6 Otherwise,
its translation capacity is too weak to be observed.

We can observe that the effect of word alignment data is clearly evidenced by reduced bilingual
perplexity of WA in comparison to WA-rand. In the case of SA vs. SA-rand, SA-rand attains better
multilingual perplexity in ZH-EN yet fails at EN-ZH direction, possibly because of the imbalanced
proportion of Chinese data in sentence alignment (refer to Table 3). From the perspective of in-
formation theory, SA, WA, and CS all achieve positive mutual information, although CS does not
outperform CS-rand in terms of multilingual perplexity. In summary, both WA and SA contribute
significantly to LLM’s translation capability, mirroring the findings of the post-training experiments.

5.4 TRANSLATION CAPABILITY FROM PURE MONOLINGUAL DATA

So far we have verified the role of unintentional bilingualism, encompassing both sentence align-
ment and word alignment, in enhancing the LLM’s translation capabilities. To delve deeper, we
draw inspiration from Pires et al. (2019); Artetxe et al. (2020) and pose a further question: Does the
presence of unintentional bilingualism within the pre-training corpus constitute a prerequisite for
translation ability? In other words, after eliminating unintentional bilingualism, can the LLM ac-
quire translation abilities simply by training on the purified bilingual data? To answer the question,
we pre-train BLOOM-560m from scratch exclusively using purified bilingual data. The experiment
results are shown in Table 8.

5The “random” in Table 6 refers to directly outputting a random shuffle of source sentences in the test set
as system hypothesis.

6Mathematically, if the perplexity of target language modeling p(y) if higher than the conditional perplexity
p(y | x), then the mutual information Ip = Hp(y)�Hp(y | x) is positive (Xu et al., 2020).
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Experiments — Training a small model

Note: Random denotes randomly sample another source sentence as the translation  

COMET and BLEURT may be unreliable to 
compare weak translation systems
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ZH-EN EN-ZH
target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot
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SA-rand 85.50 110.85 109.13 109.00 – – – –
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CS 138.36 129.82 131.35 132.37 343.39 270.67? 268.45 273.18
CS-rand 91.34 112.20 109.21 108.21 351.53 281.94 269.61 266.18

Table 7: Translation performance for pre-training smaller-scale LLM (BLOOM-560m) in terms
of perplexity. CS = code-switching, WA = word alignment, SA = sentence alignment. Numbers
marked with an asterisk are significant improvements (t-test, p < 0.05) compared with the second-
best model in the same block; The Numbers underlined are smaller translation perplexity than target
language modeling perplexity. “–” denotes the number is above 2⇥ 103.

the majority of pre-trained models under various data settings exhibit only near-random5 COMET
scores that are much lower than the numbers in Table 5, indicating the potential risk of drawing a
conclusion based solely on the comparison of the rather subpar translations upon decoding.
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of pre-training BLOOM-560m evaluated on
WMT21 with 5 in-context examples. The
near-random performance suggests the num-
bers might be noisy and thus unreliable.
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measure their translation ability. We also present
the monolingual perplexity of target language mod-
eling (the “target” column in Table), which is ob-
tained by concatenating the ytest into the prompt
outlined in §5.1 and computing the perplexity on
ytest. In contrast, to obtain monolingual perplex-
ity, we solely input the ytest into language models
to compute its perplexity. From the information the-
ory perspective (Xu et al., 2020), when bilingual
perplexity is lower than monolingual perplexity, the
LLM encapsulates positive mutual information be-
tween two languages and is able to employ informa-
tion in source languages, which can be interpreted as
translation capacity to a certain degree. 6 Otherwise,
its translation capacity is too weak to be observed.

We can observe that the effect of word alignment data is clearly evidenced by reduced bilingual
perplexity of WA in comparison to WA-rand. In the case of SA vs. SA-rand, SA-rand attains better
multilingual perplexity in ZH-EN yet fails at EN-ZH direction, possibly because of the imbalanced
proportion of Chinese data in sentence alignment (refer to Table 3). From the perspective of in-
formation theory, SA, WA, and CS all achieve positive mutual information, although CS does not
outperform CS-rand in terms of multilingual perplexity. In summary, both WA and SA contribute
significantly to LLM’s translation capability, mirroring the findings of the post-training experiments.

5.4 TRANSLATION CAPABILITY FROM PURE MONOLINGUAL DATA

So far we have verified the role of unintentional bilingualism, encompassing both sentence align-
ment and word alignment, in enhancing the LLM’s translation capabilities. To delve deeper, we
draw inspiration from Pires et al. (2019); Artetxe et al. (2020) and pose a further question: Does the
presence of unintentional bilingualism within the pre-training corpus constitute a prerequisite for
translation ability? In other words, after eliminating unintentional bilingualism, can the LLM ac-
quire translation abilities simply by training on the purified bilingual data? To answer the question,
we pre-train BLOOM-560m from scratch exclusively using purified bilingual data. The experiment
results are shown in Table 8.

5The “random” in Table 6 refers to directly outputting a random shuffle of source sentences in the test set
as system hypothesis.

6Mathematically, if the perplexity of target language modeling p(y) if higher than the conditional perplexity
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• WA achieves lower PPL than both SA and CS 

• Exception: SA-random is better than SA. 

• Does it mean SA-random contain more translation signals than SA?
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Evaluation by conditional perplexity w.r.t P(e|f) defined by ICL

• SA-rand does not capture translation capability due to its limited size

• P(e|f) for SA-random does not take into account f at all.  

• P(e|f) for SA-random is reduced to a target language model P(e). 

Target column denotes the perplexity w.r.t the target language model P(e)
Underline “_” denotes the translation signal emerges
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# step ZH-EN EN-ZH
target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot

4.5k 145.54 155.12 148.94 147.00 562.75 804.49 727.77 711.32
7.5k 114.55 141.42 132.69 129.77 450.33 517.05 477.31 511.61
10k 66.13 90.49 83.75 81.87 242.68 200.21 182.51 179.54

Table 8: The translation capacity (in terms of perplexity) on WMT21 for pre-training smaller-scale
LLM (BLOOM-560m) on purified bilingual data. The underlined numbers represent bilingual per-
plexity values that are lower than the monolingual perplexity in the target language.

# step ZH-EN EN-ZH
target 1-shot 3-shot 5-shot target 1-shot 3-shot 5-shot

4.5k 174.42 187.75 185.38 188.20 662.53 871.74 797.75 744.06
7.5k 114.34 126.31 130.49 122.63 414.13 736.75 528.85 456.46
10k 105.69 121.84 119.52 117.46 410.69 734.54 512.70 432.36

Table 9: The translation capacity (in terms of perplexity) on WMT21 for pre-training smaller-scale
LLM (BLOOM-560m) on purified bilingual data with all digits substituted.

We observe that the LLM exhibits positive mutual information on EN-ZH direction after training
for 10k steps. It is therefore evidenced that LLM could acquire translation ability through training
on purified bilingual data, possibly conditioned on sufficient data and specific translation direction.
Concerning the possible reason, we postulate that the co-occurring digits and symbols within both
languages are mapped to shared space and act as anchoring points to initially align their adjacent
context and progressively extend to the entire semantic space (Pires et al., 2019; Conneau et al.,
2020b). To investigate the effect of digits and symbols in pre-training corpus, we substitute all digits
in purified bilingual data with words in respective languages and repeat the experiment.7 The results
are shown in Table 9. It seems that the positive mutual information on EN-ZH direction disappears,
which primarily agrees with our hypothesis. Nevertheless, further experiments and analyses are
needed to draw more definitive conclusions and we leave the exploration to future work.

5.5 DOES PARAMETER-SHARING BENEFIT TRANSLATION CAPABILITY?

Aside from comparing the effect of different types of unintentional bilingualism, we are also in-
terested in how parameter-sharing between two languages influences the effect of unintentional
bilingualism. Prior studies (Conneau et al., 2020b; K et al., 2020; Dufter & Schütze, 2020) on
mBERT (Devlin et al., 2019) have revealed that the shared transformer layers may enable the model
to detect the language-universal structures and learn to align the representation of multiple lan-
guages with anchor points (Artetxe et al., 2020). To verify this point in LLM where unintentional
bilingualism serves as anchor points, we compare the performance of Default BLOOM-560m ar-
chitecture with a variant in which the shared transformer layers are replaced with language-specific
ones, dubbed Sep Layer. We train for 10k steps on mC4.zh/en documents and report the experiment
results in Table 108. Additionally, the performance of the model trained on purified bilingual data is
shown in Table 11. Both tables substantiate the crucial role of parameter-sharing between languages,
as the default variants exhibit significantly lower monolingual perplexity.

target 1-shot 3-shot 5-shot

Default 293.79 200.99 192.23 190.71

Sep Layer 292.88 342.83 334.14 333.02

Table 10: The translation capacity (in terms
of perplexity) of different parameter-sharing
schemes on WMT21 EN-ZH after trained on
contaminated monolingual data.

target 1-shot 3-shot 5-shot

Default 242.68 200.21 182.51 179.54

Sep Layer 241.83 304.03 290.31 288.03

Table 11: The translation capacity (in terms
of perplexity) of different parameter-sharing
schemes on WMT21 EN-ZH after trained on
purified monolingual data.

7“one” for “1” in English while “—” for “1” in Chinese and so on.
8We perform experiments on EN-ZH primarily because the translation performance on EN-ZH is more

easily discernable as shown in Table 7
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Purified data: the other data excluding SA, WA and CS 

• Surprisingly, it is possible to acquire translation signal by learning from purified 

data, although it is more difficult compared with learning from SA, WA or CS.

• Why learning from purified data enables translation capability?

Underline “_” denotes the translation signal emerges



Why purified data enables translation capability? 

Sharing Target 1-shot 3-shot 5-shot

242.68 200.21 182.51 179.54

410.69 734.54 512.7 432.36

• Token Sharing in the data

• Some common tokens such as 

numerical digits are shared 

across different languages in 

the training corpus

Beijing will procure RMB 80 million in
social organization services. Beijing
News (新京报), January 28, 2013.

据航空数据提供商睿思誉的数据，中
国航空公司从波⾳公司订购了⾄少
209架737 机型，预计2024年中国航
空公司将接收80架⻜机。

Beijing will procure RMB eighty
million in social organization services.
Beijing News (新京报), January
twenty-eight, two zero one three.

据航空数据提供商睿思誉的数据，中
国航空公司从波⾳公司订购了⾄少⼆
百零九架七三七 机型，预计⼆零零
四年中国航空公司将接收⼋⼗架⻜机。

W/ Sharing Tokens W/o Sharing Tokens



Why purified data enables translation capability? 

Sharing Target 1-shot 3-shot 5-shot

242.68 200.21 182.51 179.54

241.83 304.03 290.31 288.03

• Parameter Sharing in LLMs

• The dense parameters in the 

model are shared across 

different languages during the 

training process

shared layer m

LM Head

shared layer 1

EN ZH

…

Embedding

shared layer 2

EN ZH

W/ Sharing Parameters

Under review as a conference paper at ICLR 2024

post-training (BLOOM-560m) pre-training (BLOOM-560m) post-training (BLOOM-7.1b)

Precision float16 float16 float16

Batch Size 256 512 128
Optimizer AdamW AdamW AdamW
Adam (�1,�2) (0.9,0.95) (0.9,0.95) (0.9, 0.95)
Learning Rate 1e-5 3e-4 1e-4
Sequence Length 1024 1024 1024
Warmup Step 0 500 0
Decay style cosine cosine cosine

Min. Learning Rate 0 0 0
Weight Decay 1e-1 1e-1 1e-1
Gradient clip 1.0 1.0 1.0
LoRA rank NA NA 8
LoRA ↵ NA NA 16

Table 18: The hyper-parameters for post-training and pre-training.

C MORE IMPLEMENTATION DETAILS

Our experiments are conducted on a cloud Linux server with Ubuntu 16.04 operating system. The
codes are written in Python 3.10 using the code from huggingface library14. The GPU type is Nvidia
Tesla V100 with 32GB GPU memory.

The detailed hyper-parameter settings for post-training and from-scratch training are shown in Ta-
ble 18. Note that for post-training of BLOOM-7.1b, without loss of generality, we use the LoRA (Hu
et al., 2022) as a parameter-efficient training technique rather than full-parameter training. We apply
the low-rank adaptation for the query, key, value and output projection matrices in the self-attention
module within every transformer layer. We train the model for one epoch for both post-training and
pre-training. To ensure a fair comparison, we maintain the size and language composition of X-rand
to be consistent with X. Specially, when preparing X-rand data, the sampling ratio between C4.en
and C4.zh is in alignment with the composition proportion shown in Table 3.

For prompting, we randomly sample in-context examples from the candidate pool. For decoding,
we use greedy search with a minimal generation length of 5. It is possible that with a more sophis-
ticated prompting and decoding algorithm we may get better results but the decoding algorithm or
prompting strategy is not the focus of this study.

For the experiments on parameter-sharing, the model architecture of Sep Layer version is shown in
Figure 3. As is shown, English data and Chinese data have different pathways and merely share
word embedding layers and language modeling head.

EN layer m

LM Head

EN layer 1 ZH layer 1

ZH layer m

EN ZH

… …

Embedding

EN layer 2 ZH layer 2

EN ZH

Figure 3: The model architecture of parameter-
sharing experiment. The modules in blue and
yellow are exclusive for English and Chinese,
respectively. The modules in green are shared
modules of two languages.

Figure 4: The perplexity dynamics of BLOOM
model family on model size for both X-EN and
EN-X.

14
https://huggingface.co/

19

W/O Sharing Parameters



Summary

• Word-Alignment data provides comparable or sometimes superior 

translation signals to LLMs compared with sentence-alignment data

• Code-Switch data may also provide modest translation signals to LLMs

• Purified data may boost the translation capability of LLMs through 

common tokens (e.g. numeric digits) and sharing parameters in the 

architecture of LLMs across different languages 



Future Work

• This work explores why LLMs enable translation capability but how LLMs 

learn to translate? 

• It is promising to collect word-aligned data to boost the translation 

capability of LLMs

• Sentence-level parallel data is limited especially for low-resource 

translation tasks



Thanks


