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Quality of Learning Outcomes in Potential Games

How do we measure the performance of learning dynamics?

Are some learning dynamics better than others?

● Multi-agent learning occurs on highly non-convex landscapes.

● Even if learning dynamics equilibrate, their fixed points may be of 
poor performance.



Limitations of Static Performance Metrics

● The PoA does not depend on the learning process.

● The socially-worst equilibrium might be reachable by only a few initializations.

● The PoA can be unbounded even for simple classes of games.



Average Price of Anarchy (APoA)

● The APoA requires equilibration for almost all initial conditions.

● The APoA depends on the learning process.



Convergence of QRD in Potential Games (Theorem 3.2)

Replicator 
Dynamics

(1-RD)

Smoothed 
Gradient 
Descent
(0-RD)

Q-Replicator Dynamics (QRD)

● QRD equilibrate in almost all 
potential games

● QRD equilibrate for almost all 
initial conditions



Average Price of Anarchy Analysis for QRD

In symmetric 2x2 potential games, where the payoff-dominant and risk 
dominant equilibria coincide:

● Gradient Descent outperforms Replicator Dynamics 
in terms of APoA (Theorem 4.6)

● The APoA of Gradient Descent is upper bounded by 2 
(Theorem 4.8)
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