

# SepCLR: Separating common from salient patterns with Contrastive Representation Learning

### **Contributions** :

## Caution: do not confond Contrastive Learning and Contrastive Analysis ! These are different !



Based on the InfoMax Principle, we introduce SepCLR, a novel theoretical framework for Contrastive Analysis (CA). To estimate and maximize the Mutual Information terms, we use Contrastive Representation Learning (CLR). We introduce **k-JEM**, a strategy to reduce information leakage between two blocks of the latent space.

# **NeuroSpin**





# θ



## Fig. 3: Scheme of SepCLR. SepCLR is trained to identify and separate the salient patterns (color variations) of the target dataset Y from the common patterns (shape) shared between background X and target dataset Y.

# The InfoMax principle for Contrastive Analysis





# The Common InfoMax principle terms



Alignment term: In our paper, we derive a widde view angument term with a KDE, mixing the usual Angument term with Mutual Information:

 $- E_{x \sim p_x} H(c \mid x) =$ 

In the case where

Wang et al., Understanding Contrastive Learning with alignment and uniformity, ICLR 2021. Chen et al., A Simpe Framework for Contrastive Learning of Visual Representations, PMLR 2021.

Objective: Estimate the common InfoMax term: I(x; c) + I(y; c).



(2)

Constant term

Constant term

### (4)en et al, 2020 (SimCLR).



# The Common InfoMax principle terms

### Objective: Maximize the common InfoMax term: I(x; c) + I(y; c).





## Fig. 4: Effect of the Common InfoMax on the common latent space.







## The constrained Salient InfoMax term

### Objective: Estimate the salient InfoMax term constrained by the information-less hyp: max I(y; s) s.t DKL(sx; $\delta(s')$ ) = 0.



### **Target-only Alignment term:**



### s'- Entropy term:





Information-less hyp.

(5)



# The constrained Salient InfoMax term

### Objective: Maximize the salient InfoMax term constrained by the information-less hyp: I(y; s) s.t DKL(sx; $\delta(s')$ ) = 0.



**Salient Space** 

## Fig. 5: Effect of the Salient InfoMax on the latents of target and background samples.





# The independence term between common and salient spaces.

### Objective: Estimate and minimize the Mutual Information term: I(c; s).



### **Entropy terms:** H(c) + H(s). The other losses should absolutely not minimize these terms !

### k-JEM - Kernel estimation of the Joint Entropy term: - H(c; s).

### Interestingly, the Mutual Information is null whenever H(c; s) = H(c) + H(s). Therefore, to nullify the mutual info, we maximize H(c; s) until it is equal to H(c) + H(s).



$$\frac{2}{2} \exp \frac{-||s_i - s_j||_2^2}{2\tau} \tag{9}$$



# **Experiments and results on simple datasets**

### **Objective:** Design simple and controlled datasets to estimate the separation of the patterns.



### Figure 6: the Superimposed MNIST digits on CIFAR background dataset. Target images are CIFAR-10 images overlaid with an MNIST digit. Background images are CIFAR-10 images.





### **Objective:** Results on MNIST digits watermarked on CIFAR-10 objects.

## Table 1: Digits on CIFAR-10 (B-ACC). Details in Sec.F.7.

|                                | DIG   | ITS  | OBJ  | ECTS  |  |
|--------------------------------|-------|------|------|-------|--|
|                                | S ↑   | C↓   | S↓   | C ↑   |  |
| CVAE                           | 90.6  |      | 11.2 |       |  |
| CONVAE                         | 86.2  |      | 10.6 |       |  |
| MM-CVAE                        | 88.8  |      | 12.2 |       |  |
| SEPVAE                         | 90.6  |      | 10.6 |       |  |
| SEPCLR-VCLUB SYM               | 94.4  |      | 8.0  |       |  |
| SEPCLR-VCLUB $C \rightarrow S$ | 95.2  |      | 9.2  |       |  |
| SEPCLR-VCLUB S $\rightarrow$ C | 95.2  |      | 8.8  |       |  |
| SEPCLR-VL10 SYM                | 95.0  |      | 8.4  |       |  |
| SEPCLR-vL10 C $\rightarrow$ S  | 94.0  |      | 10.0 |       |  |
| SEPCLR-vL10 S $\rightarrow$ C  | 95.4  |      | 9.2  |       |  |
| SEPCLR-VUB SYM                 | 94.6  |      | 8.2  |       |  |
| SEPCLR-VUB $C \rightarrow S$   | 92.8  |      | 7.8  |       |  |
| SEPCLR-VUB $S \rightarrow C$   | 96.6  |      | 8.6  |       |  |
| SEPCLR-TC                      | 95.2  |      | 10.2 |       |  |
| SEPCLR-MMD                     | 94.6  |      | 9.0  |       |  |
| SEPCLR-NO K-JEM                | 95.6  |      | 9.0  |       |  |
| SEPCLR-K-MI                    | 96.2  |      | 8.0  |       |  |
| SEPCLR-K-JEM                   | 96.2  |      | 10.4 |       |  |
| BEST EXPECTED                  | 100.0 | 10.0 | 10.0 | 100.0 |  |

# **Experiments and results on simple datasets**

 $\delta_{\text{TOT}}\downarrow$ 





### **Objective:** Results on MNIST digits watermarked on CIFAR-10 objects.

### T

|                                | DIGITS |      | OBJECTS |       | $\delta_{\text{TOT}}\downarrow$ |
|--------------------------------|--------|------|---------|-------|---------------------------------|
|                                | S ↑    | C↓   | S↓      | C ↑   |                                 |
| CVAE                           | 90.6   | 23.0 | 11.2    | 33.4  | 90.2                            |
| CONVAE                         | 86.2   | 21.0 | 10.6    | 35.6  | 89.8                            |
| MM-CVAE                        | 88.8   | 19.6 | 12.2    | 32.0  | 93.6                            |
| SEPVAE                         | 90.6   | 17.8 | 10.6    | 36.6  | 81.2                            |
| SEPCLR-VCLUB SYM               | 94.4   | 18.0 | 8.0     | 14.6  | 97.0                            |
| SEPCLR-VCLUB $C \rightarrow S$ | 95.2   | 39.4 | 9.2     | 27.2  | 106.2                           |
| SEPCLR-VCLUB $S \rightarrow C$ | 95.2   | 57.0 | 8.8     | 31.8  | 118.8                           |
| SEPCLR-VL10 SYM                | 95.0   | 18.4 | 8.4     | 15.4  | 96.4                            |
| SEPCLR-vL10 C $\rightarrow$ S  | 94.0   | 23.0 | 10.0    | 31.8  | 87.2                            |
| SEPCLR-VL10 S $\rightarrow$ C  | 95.4   | 41.0 | 9.2     | 28.8  | 106.0                           |
| SEPCLR-VUB SYM                 | 94.6   | 42.0 | 8.2     | 29.0  | 106.6                           |
| SEPCLR-VUB $C \rightarrow S$   | 92.8   | 23.4 | 7.8     | 22.6  | 95.8                            |
| SEPCLR-VUB $S \rightarrow C$   | 96.6   | 41.8 | 8.6     | 28.6  | 105.2                           |
| SEPCLR-TC                      | 95.2   | 68.6 | 10.2    | 24.2  | 139.4                           |
| SEPCLR-MMD                     | 94.6   | 21.2 | 9.0     | 62.2  | 53.4                            |
| SEPCLR-NO K-JEM                | 95.6   | 94.4 | 9.0     | 42.0  | 145.8                           |
| SEPCLR-K-MI                    | 96.2   | 19.8 | 8.0     | 65.8  | 45.8                            |
| SEPCLR-K-JEM                   | 96.2   | 11.0 | 10.4    | 73.2  | 32.0                            |
| BEST EXPECTED                  | 100.0  | 10.0 | 10.0    | 100.0 | 0.0                             |

## **Experiments and results on simple datasets**



# Experiments and results on a neuroimaging task

### **Objective:** Experiment on a neuroimaging application - Schizophrenia Disorders vs Healthy Controls setup.

Common space : should capture age and sex, or acquisition site.

## Table 3: Separate healthy from pathological variability in Schizophrenia disorder. Best in **bold**.

CVAE CONVAE MM-CVAE SEPVAE SEPCLR-K-JE

Datasets: Neuroanatomical T1w brain MRIs with (128x128x128) voxels pre-processed with Voxel Based Morphometry.

|    | AGE MAE         |                   | SEX B-ACC        |                  | SITE B-ACC       |                  |
|----|-----------------|-------------------|------------------|------------------|------------------|------------------|
|    | C↓              | S ↑               | C↑               | S↓               | C↑               | S↓               |
|    | $6.43 \pm 0.18$ | $7.27 \pm 0.25$   | $75.06 \pm 3.48$ | $74.99 \pm 2.15$ | $65.12 \pm 4.06$ | $59.62 \pm 5.42$ |
|    | $6.40 \pm 0.26$ | $7.46 \pm 0.18$   | $74.45 \pm 1.80$ | $72.72 \pm 1.32$ | $60.42 \pm 3.67$ | $54.46 \pm 2.46$ |
|    | $6.55 \pm 0.18$ | $7.10 \pm 0.34$   | $72.80 \pm 3.95$ | $72.15 \pm 2.47$ | 63.24±1.41       | $56.69 \pm 9.84$ |
|    | $6.40 \pm 0.13$ | $7.98 {\pm} 0.25$ | $74.19 \pm 1.81$ | $72.61 \pm 2.19$ | $63.89 \pm 2.16$ | $44.10 \pm 5.78$ |
| EM | $6.64 \pm 0.21$ | $7.72 \pm 0.45$   | $76.5 \pm 1.98$  | $70.85 \pm 1.89$ | 66.94±5.06       | $42.40{\pm}4.91$ |



# Experiments and results on a neuroimaging task

### **Objective:** Experiment on a neuroimaging application - Schizophrenia Disorders vs Healthy Controls setup.

Common space : should capture age and sex, or acquisition site. Salient space : should capture pathology-specific patterns such as

### Table 3: Separate healthy from pathological variability in Schizophrenia disorder. Best in **bold**.

CVAE CONVAE MM-CVAE SEPVAE SEPCLR-K-JE

CVAE CONVAE MM-CVAE SEPVAE SEPCLR-K-JE

Datasets: Neuroanatomical T1w brain MRIs with (128x128x128) voxels pre-processed with Voxel Based Morphometry.

|    | AGE MAE           |                   | SEX B-ACC        |                  | SITE B-ACC       |                  |
|----|-------------------|-------------------|------------------|------------------|------------------|------------------|
|    | C↓                | S ↑               | C↑               | S ↓              | C ↑              | S↓               |
|    | $6.43 \pm 0.18$   | $7.27 \pm 0.25$   | $75.06 \pm 3.48$ | $74.99 \pm 2.15$ | $65.12 \pm 4.06$ | $59.62 \pm 5.42$ |
|    | $6.40 \pm 0.26$   | $7.46 \pm 0.18$   | $74.45 \pm 1.80$ | $72.72 \pm 1.32$ | $60.42 \pm 3.67$ | $54.46 \pm 2.46$ |
|    | $6.55 \pm 0.18$   | $7.10 \pm 0.34$   | $72.80 \pm 3.95$ | $72.15 \pm 2.47$ | $63.24 \pm 1.41$ | $56.69 \pm 9.84$ |
|    | $6.40 \pm 0.13$   | $7.98 {\pm} 0.25$ | $74.19 \pm 1.81$ | $72.61 \pm 2.19$ | $63.89 \pm 2.16$ | $44.10 \pm 5.78$ |
| EM | $6.64 \pm 0.21$   | $7.72{\pm}0.45$   | $76.5 \pm 1.98$  | 70.85±1.89       | $66.94 \pm 5.06$ | $42.40{\pm}4.91$ |
|    | SANS MAE SAPS MAE |                   | DIAG             | NOSIS            |                  |                  |
|    | C ↑               | S ↓               | C↑               | S ↓              | C ↓              | S ↑              |
|    | $5.89 \pm 0.67$   | $4.35 \pm 0.26$   | $4.65 \pm 0.34$  | $2.98 \pm 0.18$  | $60.66 \pm 2.63$ | $68.24 \pm 5.42$ |
|    | $6.17 \pm 0.45$   | $3.95 \pm 0.28$   | $4.50 \pm 0.37$  | $2.76 \pm 0.18$  | $61.85 \pm 2.60$ | $58.53 \pm 4.87$ |
|    | $6.78 \pm 0.54$   | $4.92 \pm 0.58$   | $4.52 \pm 0.33$  | $3.16 \pm 0.05$  | $64.25 \pm 2.98$ | $70.94 \pm 4.08$ |
|    | $7.05 \pm 0.67$   | $4.14 \pm 0.39$   | $4.79 \pm 0.67$  | $2.60 \pm 0.27$  | 60.90±1.75       | $79.15 \pm 3.39$ |
| EM | 9.17±2.49         | $3.74 \pm 0.12$   | $5.54 \pm 0.70$  | $2.52 \pm 0.16$  | 60.16±1.19       | $79.90{\pm}1.57$ |

**SANS** (Negative Symptoms) **SAPS** (Positive Symptoms).



## Conc usion

### Perspectives:

## Develop a Contrastive Analysis method with Diffusion Models. Investigate the use of k-JEM in other tasks (such as multi modality content separation, debiasing, domain adaptation).

### Contact: robin.louiset@gmail.com

## Currently looking for a post-doctoral position in France or in Switzerland.

Thanks to: - Pietro Gori: - Edouard Duchesnay: - Antoine Grigis:



pietro.gori@telecom-paris.fr edouard.duchesnay@cea.fr antoine.grigis@cea.fr



## Thanks for listening!

## Contact: robin.louiset@gmail.com

## Currently looking for a post-doctoral position in France or in Switzerland.

Thanks to: - Pietro Gori: - Edouard Duchesnay: - Antoine Grigis:

### pietro.gori@telecom-paris.fr edouard.duchesnay@cea.fr antoine.grigis@cea.fr