
1

Light-MILPopt: Solving Large-scale Mixed
Integer Linear Programs with Lightweight

Optimizer and Small-scale Training Dataset

Huigen Ye, Hua Xu*, Hongyan Wang

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China

2

Contents

� Introduction

� Method

� Experiments

� Conclusion

3

Background

� Many real-world optimization problems in the real world can be abstracted as mixed
integer linear programming problems（MILPs）
u Routing[1]

u Scheduling[2]

u Timetabling[3]

� Formally, the MILPs can be defined as follows

4

Challenge

� GNN&GBDT-guided optimizing framework（SOTA）:
u Firstly, representing MILPs as an entire graph poses challenges in terms of model training and

computational resources, particularly when tackling large-scale MILPs

u Secondly, GNN requires large-scale MILP instances of similar size as training data, leading to
significant computational and storage resource demands during the training phase

u Thirdly, the problem reduction is exclusively applied at the decision variable level, neglecting
potential synergy with constraint reduction, thereby resulting in limited effectiveness in
problem reduction

5

Contents

� Introduction

� Method

� Experiments

� Conclusion

6

Overview

� Light-MILPopt is divided into four stages: Problem Formulation, Model-based Initial
Solution Prediction, Problem Reduction, Data-driven Optimization. The proposed
lightweight optimization framework can solve large-scale MILPs with only small-scale
optimizer and small training dataset.

Large-scale MIP

Small Training Dataset
with Small-scale

Optimizer
X = [3, 1, 0, ……, -2]

!!	#! +⋯+ 	 !"	#"
	 &!!	#! +⋯+ &!" #"≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	

...

x1

xn

δ1

δm

Bipartite Graph
Representation

xi

...
...

Graph Partition-based
Problem Segmentation

xn

δ1

δm

xi

...
...

x1

...

EGAT with Half
Convolutions for Every

Subgraph

...
...

...

Neural Prediction

0.3
0.7

0.8

...

...

...

...

...

...

Variables ReductionConstraint Reduction

Optimal
Solution

Model Based Initial Solution Prediction

Dataset
Problem

Formulation
Problem Reduction

1.2

0.6

0.8

variable node

node’s embedding

constraint node

node’s partition

current solution constraint

redundant constraint fixed variable variable to be optimized optimized variable

optimal variable

FENNEL

Trim high-confidence
decision variables

0.8

0.2

0.9

1.2 predict value
0.8 high confidence 0.3 low confidence redundant to be deleted redundant to be added

edge to be deleted

Trim redundant constraints

Neighborhood Partition

………

…

...
...

...

Subgraph Clustering

…
……

Update Constraint Set

.
x .
r

Search with
Fixed Radius

.
x .
r

Neighborhood
Crossover

Search Initial Solution Neighborhood
Search

Search with
Fixed Radius

Update Neighborhood Set

Data-driven Optimization

C
urrent Solution

Updated Constraints & Neighborhood Updated Constraints

7

Problem Formulation

� Problem Formulation: problem division to reduce model computational costs
u Initially, the MILP to be solved is represented as a bipartite graph

u Then the FENNEL graph partition algorithm combined with the idea of Graph-Bert subgraph
partition is used for problem division to reduce computational cost

u Based on the above steps, all the subgraphs obtained from the graph partition form the inputs
for feature-embedding neural networks

Bipar&te graph representa&on FENNEL graph par&&on algorithm

8

Model-based Initial Solution Prediction

� Model-based Initial Solution Prediction: predicting and constructing the initial solution
using a small-scale training dataset

u Given the graph representation with multiple small-scale subgraphs for the large-scale MILP,
EGAT with Half-convolutions learns the neural embedding for the decision variables

u Then the Neural Prediction network with Multi-Layer Perceptron (MLP) structure predicts the
initial value of the corresponding decision variable in the subgraph through the neural
embedding

u Finally, the predicted initial solution will guide the subsequent problem reduction

⋮⋮

⋮⋮

⋮⋮

⋮⋮

⋮⋮ ⋮⋮ ⋮⋮

Step 1 Step 2 Step 3

Constraint Edge Variable Constraint Edge Variable Constraint Edge Variable

EGAT with Half-convolu4ons Neural Predic4on

9

Problem Reduction

� Problem Reduction: both variable and constraint reduction
u Given the predicted initial solution of the MILP, the generalized confidence threshold method

adaptively fixes the high-confidence decision variable to achieve Variables Reduction

u Then, KNN strategy is used for Constraint Reduction to identify active constraints.

u Finally, the reduction of decision variables and constraints can jointly guide the initial solution
search and iterative optimization

Variables Reduc.on Constraint Reduc.on

10

Data-driven Optimization

� Data-driven Optimization: current solution improvement employing a lightweight
optimizer

u Based on the predicted initial solution and the problem reduction, we first solve the reduced
subproblem to obtain the Initial Solution for the complete MILP using lightweight optimizer

u Then, under the guidance of Neighborhood Updating and the active Constraint Set Updating,
neighborhood search and individual crossover iteratively improve the current solution

u Finally, when a predetermined wall-clock time or condition is reached, the current solution is
output as the final optimization result

Constraint Set Upda.ng

#!
.!

#&

#'

#(

#)

.'

.&

#!

#'

#&

#(

#)

Neighborhood PartitionGraph Partition

#!

#'

#&

#(

#)

#!

#'

#&

#(

#)

Neighborhood CrossoverNeighborhood search and individual crossover

11

Contents

� Introduction

� Method

� Experiments

� Conclusion

12

Settings

� Dataset
u Four widely used NP-hard benchmark MILPs: Set Covering (SC, Minimize), Minimum Vertex

Covering (MVC, Minimize), Maximum Independent Set (MIS, Maximize), Mixed Integer Knapsack
Set (MIKS, Maximize)

u One real-world large-scale MILP in the internet domain (Case Study, Maximize)

13

Comparison of Objective Value

� Compared to the large-scale solvers SCIP and Gurobi, Light-MILPopt obviously outperforms

them only using a scale-limited version solver with variable proportion 𝛼 = 30%

� The proposed framework achieves better results than the GNN&GBDT frameworks in

integer programs with the same scale of variable reduction, efficiently solving large-scale

MILPs, which cannot be solved by the GNN&GBDT framework

14

Comparison of Running Time

� Compared to the large-scale baseline solvers, the proposed framework can achieve the

same results in only 0.5% of the time for the benchmark MILPs, including SC1, MVC1,

MIS1 and MIKS1

� Even compared to the state-of-the-art ML-based frameworks, our Light-MILPopt can save

more than 90% of the time on most MILPs to achieve the same results

15

Convergence Performance Analysis

� Convergence is an essential metric for evaluating the performance of optimization

frameworks. It can be seen that the proposed framework can obtain high-quality

solutions for large-scale MILPs with only small-scale training data and a small-scale

optimizer, and the convergence performance of Light-MILPopt is not weaker than that

of the state-of-the-art solver Gurobi as well as the state-of-the-art ML-based

optimization framework

(a) The minimized SC problem. (b) The minimized MVC problem. (c) The minimized MIS problem.

16

Contents

� Introduction

� Method

� Experiments

� Conclusion

17

Conclusion

� Future work
u Ultra-large-scale
u Multi-objective
u Nonlinear constraint

18

References

1. RV Kulkarni and Pramod R Bhave. “Integer Programming Formulations of Vehicle Routing Problems”. In: European Journal of
Operational Research 20.1 (1985), pp. 58–67.

2. Armin Fügenschuh. “Solving a School Bus Scheduling Problem with Integer Programming”. In: European Journal of Operational
Research 193.3 (2009), pp. 867–884.

3. Armann Ingolfsson et al. “Combining Integer Programming and the Randomization Method to Schedule Employees”. In: European
Journal of Operational Research 202.1 (2010), pp. 153–163.

4. Jiayi Zhang et al. “A Survey for Solving Mixed Integer Programming via Machine Learning”. In: Neurocomputing 519 (2023), pp. 205–
217.

5. Michel Bénichou et al. “Experiments in Mixed-integer Linear Programming”. In: Mathematical Programming 1 (1971), pp. 76–94.

6. David Applegate et al. Finding Cuts in the TSP (A Preliminary Report). Citeseer, 1995.

7. Tobias Achterberg. “SCIP: Solving Constraint Integer Programs”. In: Mathematical Programming Computation 1.1 (2009), pp. 1–41.

8. Matteo Fischetti, Fred Glover and Andrea Lodi. “The Feasibility Pump”. In: Mathematical Programming 104 (2005), pp. 91–104.

9. Edward Rothberg. “An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions”. In: INFORMS Journal on
Computing 19.4 (2007), pp. 534–541.

10. David Pisinger and Stefan Ropke. “Large Neighborhood Search”. In: Proceedings of Handbook of metaheuristics. 2010.

11. Nicolas Sonnerat et al. “Learning a Large Neighborhood Search Algorithm for Mixed Integer Programs”. In: arXiv preprint
arXiv:2107.10201 (2021).

12. Jerome H Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”. In: Annals of Statistics (2001), pp. 1189–1232.

19

Thanks!

