

Light-MILPopt: Solving Large-scale Mixed Integer Linear Programs with Lightweight Optimizer and Small-scale Training Dataset

Huigen Ye, Hua Xu*, Hongyan Wang

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Introduction

- Method
- Experiments
- Conclusion

Background

- Many real-world optimization problems in the real world can be abstracted as mixed integer linear programming problems (MILPs)
 - Routing^[1]
 - Scheduling[2]
 - Timetabling[3]
- Formally, the **MILPs** can be defined as follows

3

Challenge

- **GNN&GBDT-guided optimizing framework (SOTA)** :
 - Firstly, representing MILPs as an entire graph poses challenges in terms of model training and computational resources, particularly when tackling large-scale MILPs
 - Secondly, GNN requires large-scale MILP instances of similar size as training data, leading to significant computational and storage resource demands during the training phase
 - Thirdly, the problem reduction is exclusively applied at the decision variable level, neglecting potential synergy with constraint reduction, thereby resulting in limited effectiveness in problem reduction

Introduction

Method

- Experiments
- Conclusion

Overview

 Light-MILPopt is divided into four stages: Problem Formulation, Model-based Initial Solution Prediction, Problem Reduction, Data-driven Optimization. The proposed lightweight optimization framework can solve large-scale MILPs with only small-scale optimizer and small training dataset.

Problem Formulation

- **Problem Formulation**: problem division to reduce model computational costs
 - Initially, the MILP to be solved is represented as a bipartite graph
 - Then the FENNEL graph partition algorithm combined with the idea of Graph-Bert subgraph partition is used for problem division to reduce computational cost
 - Based on the above steps, all the subgraphs obtained from the graph partition form the inputs for feature-embedding neural networks

Bipartite graph representation

FENNEL graph partition algorithm

Model-based Initial Solution Prediction

- Model-based Initial Solution Prediction: predicting and constructing the initial solution using a small-scale training dataset
 - Given the graph representation with multiple small-scale subgraphs for the large-scale MILP,
 EGAT with Half-convolutions learns the neural embedding for the decision variables
 - Then the Neural Prediction network with Multi-Layer Perceptron (MLP) structure predicts the initial value of the corresponding decision variable in the subgraph through the neural embedding
 - Finally, the predicted initial solution will guide the subsequent problem reduction

Problem Reduction

- **Problem Reduction**: both variable and constraint reduction
 - Given the predicted initial solution of the MILP, the generalized confidence threshold method adaptively fixes the high-confidence decision variable to achieve Variables Reduction
 - Then, KNN strategy is used for Constraint Reduction to identify active constraints.
 - Finally, the reduction of decision variables and constraints can jointly guide the initial solution search and iterative optimization

Variables Reduction

Constraint Reduction

Data-driven Optimization

- Data-driven Optimization: current solution improvement employing a lightweight optimizer
 - Based on the predicted initial solution and the problem reduction, we first solve the reduced subproblem to obtain the Initial Solution for the complete MILP using lightweight optimizer
 - Then, under the guidance of Neighborhood Updating and the active Constraint Set Updating, neighborhood search and individual crossover iteratively improve the current solution
 - Finally, when a predetermined wall-clock time or condition is reached, the current solution is output as the final optimization result

- Introduction
- Method
- Experiments
- Conclusion

Settings

Dataset

- Four widely used NP-hard benchmark MILPs: Set Covering (SC, Minimize), Minimum Vertex Covering (MVC, Minimize), Maximum Independent Set (MIS, Maximize), Mixed Integer Knapsack Set (MIKS, Maximize)
- One real-world large-scale MILP in the internet domain (Case Study, Maximize)

Drohlam	Scale	Number of	Number of	
FIODIem	Scale	Variables	Constraints	
SC	SC_1	200000	200000	
(Minimize)	SC_2	2000000	2000000	
MVC	MVC_1	100000	300000	
(Minimize)	MVC_2	1000000	3000000	
MIS	MIS_1	100000	300000	
(Maximize)	MIS_2	1000000	3000000	
MIKS	$MIKS_1$	200000	200000	
(Maximize)	$MIKS_2$	2000000	2000000	
Case Study	Case Study	20/10000	100003	
(Maximize)	Case Study	2040000		

Comparison of Objective Value

- Compared to the large-scale solvers SCIP and Gurobi, Light-MILPopt obviously outperforms them only using a scale-limited version solver with variable proportion $\alpha = 30\%$
- The proposed framework achieves better results than the GNN&GBDT frameworks in integer programs with the same scale of variable reduction, efficiently solving large-scale MILPs, which cannot be solved by the GNN&GBDT framework

	\mathbf{SC}_1	\mathbf{SC}_2	\mathbf{MVC}_1	MVC_2	MIS_1	MIS_2	\mathbf{MIKS}_1	$MIKS_2$	Case Study
Ours-30%S	17121.5↑	166756.0↑	27337.8↑	273014.6↑	22621.7↑	227074.5↑	35067.8↑	355887.6↑	944086.4↑
Ours-30%G	17047.3 ↑	163975.9 ↑	27223.3↑	272579.5 ↑	22658.0 ↑	227305.4↑	35533.4↑	357439.5↑	979797.8 ↑
GBDT-30%S	17222.2	261174.0	27515.4	276306.9	22389.3	223349.8	-	-	-
GBDT30%G	18487.6	281021.2	27700.8	281234.5	22115.9	210019.2	-	-	-
Ours-50%S	16147.2↑	166966.9↑	26956.8↑	269771.3↑	22963.6↑	230278.1↑	36125.5↑	357483.8↑	944166.1↑
Ours-50%G	16108.1 ↑	160015.5 ↑	26950.7 ↑	269571.5 ↑	22966.5 ↑	230432.9↑	36108.2↑	362265.1↑	980688.0 ↑
GBDT50%S	16728.8	268294.9	27107.9	271777.2	22795.7	227006.4	-	-	-
GBDT50%G	17503.4	252797.2	27329.9	274600.8	22530.1	215393.6	-	-	-
SCIP	25191.2	385708.4	31275.4	491042.9	18649.6	9104.3	29974.7	168289.9	924954.5
Gurobi	17934.5	320240.4	28151.3	283555.8	21789.0	216591.3	32960.0	329642.4	-
Time	2000s	12000s	2000s	8000s	2000s	8000s	2000s	6000s	1000s

Comparison of Running Time

- Compared to the large-scale baseline solvers, the proposed framework can achieve the same results in only 0.5% of the time for the benchmark MILPs, including SC1, MVC1, MIS1 and MIKS1
- Even compared to the state-of-the-art ML-based frameworks, our Light-MILPopt can save more than 90% of the time on most MILPs to achieve the same results

	\mathbf{SC}_1	\mathbf{SC}_2	MVC ₁	MVC ₂	MIS_1	MIS_2	$MIKS_1$	MIKS ₂	Case Study
Ours-30%S	1998.1s↑	11823.0s↑	1951.6s↑	7967.2s↑	1951.6s↑	7967.2s↑	1982.0s↑	11980.4s↑	996.4s↑
Ours-30%G	1166.8 s↑	5645.0s↑	1475.3s↑	6453.3s↑	1487.3 s↑	7250.5s↑	593.9 s↑	7941.9 s↑	511.5s↑
GBDT-30%S	>48369.2s	>60000s	>60000s	>60000s	>60000s	>60000s	-	-	-
GBDT30%G	>30347.8s	>60000s	>60000s	>60000s	>60000s	>60000s	-	-	-
Ours-50%S	352.2s↑	11441.3s↑	203.1s↑	1815.3s↑	225.9s↑	1945.7 s↑	194.9s↑	9576.1s↑	776.2s↑
Ours-50%G	177.8s↑	1795.4s↑	193.8 s↑	1503.3s↑	223.5s↑	2062.7s↑	160.5s↑	2137.8 s↑	506.9s↑
GBDT50%S	587.6s	>60000s	297.6s	7570.5s	348.6s	5920.7s	-	-	-
GBDT50%G	5041.6s	>60000s	29320.5s	21397.3s	4227.1s	27952.9s	-	-	-
SCIP	>60000s	>60000s	>60000s	>60000s	>60000s	>60000s	>60000s	>60000s	3097.0s
Gurobi	>60000s	>60000s	>60000s	>60000s	>60000s	>60000s	45599.4s	>60000s	2584.7s
Target	17121.5	166756.0	27337.8	273014.6	22621.7	227074.5	35067.8	355887.6	944086.4

Convergence Performance Analysis

15

• Convergence is an essential metric for evaluating the performance of optimization frameworks. It can be seen that the proposed framework can obtain high-quality solutions for large-scale MILPs with only small-scale training data and a small-scale optimizer, and the convergence performance of Light-MILPopt is not weaker than that of the state-of-the-art solver Gurobi as well as the state-of-the-art ML-based optimization framework

- Introduction
- Method
- Experiments
- Conclusion

Conclusion

- Future work
 - Ultra-large-scale
 - Multi-objective
 - Nonlinear constraint

References

- 1. RV Kulkarni and Pramod R Bhave. "Integer Programming Formulations of Vehicle Routing Problems". In: European Journal of Operational Research 20.1 (1985), pp. 58–67.
- 2. Armin Fьgenschuh. "Solving a School Bus Scheduling Problem with Integer Programming". In: European Journal of Operational Research 193.3 (2009), pp. 867–884.
- 3. Armann Ingolfsson et al. "Combining Integer Programming and the Randomization Method to Schedule Employees". In: European Journal of Operational Research 202.1 (2010), pp. 153–163.
- Jiayi Zhang et al. "A Survey for Solving Mixed Integer Programming via Machine Learning". In: Neurocomputing 519 (2023), pp. 205–217.
- 5. Michel Bйnichou et al. "Experiments in Mixed-integer Linear Programming". In: Mathematical Programming 1 (1971), pp. 76–94.
- 6. David Applegate et al. Finding Cuts in the TSP (A Preliminary Report). Citeseer, 1995.
- 7. Tobias Achterberg. "SCIP: Solving Constraint Integer Programs". In: Mathematical Programming Computation 1.1 (2009), pp. 1–41.
- 8. Matteo Fischetti, Fred Glover and Andrea Lodi. "The Feasibility Pump". In: Mathematical Programming 104 (2005), pp. 91–104.
- 9. Edward Rothberg. "An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions". In: INFORMS Journal on Computing 19.4 (2007), pp. 534–541.
- 10. David Pisinger and Stefan Ropke. "Large Neighborhood Search". In: Proceedings of Handbook of metaheuristics. 2010.
- 11. Nicolas Sonnerat et al. "Learning a Large Neighborhood Search Algorithm for Mixed Integer Programs". In: arXiv preprint arXiv:2107.10201 (2021).
- 12. Jerome H Friedman. "Greedy Function Approximation: A Gradient Boosting Machine". In: Annals of Statistics (2001), pp. 1189–1232.

Thanks!

