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Background

� Many real-world optimization problems in the real world can be abstracted as mixed 
integer linear programming problems（MILPs）
u Routing[1]

u Scheduling[2]

u Timetabling[3]

� Formally, the MILPs can be defined as follows
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Challenge

� GNN&GBDT-guided optimizing framework（SOTA）:
u Firstly, representing MILPs as an entire graph poses challenges in terms of model training and 

computational resources, particularly when tackling large-scale MILPs

u Secondly, GNN requires large-scale MILP instances of similar size as training data, leading to 
significant computational and storage resource demands during the training phase

u Thirdly, the problem reduction is exclusively applied at the decision variable level, neglecting 
potential synergy with constraint reduction, thereby resulting in limited effectiveness in 
problem reduction
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Overview

� Light-MILPopt is divided into four stages: Problem Formulation, Model-based Initial 
Solution Prediction, Problem Reduction, Data-driven Optimization. The proposed 
lightweight optimization framework can solve large-scale MILPs with only small-scale 
optimizer and small training dataset.
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Problem Formulation

� Problem Formulation: problem division to reduce model computational costs
u Initially, the MILP to be solved is represented as a bipartite graph

u Then the FENNEL graph partition algorithm combined with the idea of Graph-Bert subgraph 
partition is used for problem division to reduce computational cost

u Based on the above steps, all the subgraphs obtained from the graph partition form the inputs 
for feature-embedding neural networks

Bipar&te graph representa&on FENNEL graph par&&on algorithm
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Model-based Initial Solution Prediction

� Model-based Initial Solution Prediction: predicting and constructing the initial solution 
using a small-scale training dataset

u Given the graph representation with multiple small-scale subgraphs for the large-scale MILP, 
EGAT with Half-convolutions learns the neural embedding for the decision variables

u Then the Neural Prediction network with Multi-Layer Perceptron (MLP) structure predicts the 
initial value of the corresponding decision variable in the subgraph through the neural 
embedding

u Finally, the predicted initial solution will guide the subsequent problem reduction
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Problem Reduction

� Problem Reduction: both variable and constraint reduction
u Given the predicted initial solution of the MILP, the generalized confidence threshold method 

adaptively fixes the high-confidence decision variable to achieve Variables Reduction

u Then, KNN strategy is used for Constraint Reduction to identify active constraints. 

u Finally, the reduction of decision variables and constraints can jointly guide the initial solution 
search and iterative optimization

Variables Reduc.on Constraint Reduc.on
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Data-driven Optimization

� Data-driven Optimization: current solution improvement employing a lightweight 
optimizer

u Based on the predicted initial solution and the problem reduction, we first solve the reduced 
subproblem to obtain the Initial Solution for the complete MILP using lightweight optimizer

u Then, under the guidance of Neighborhood Updating and the active Constraint Set Updating, 
neighborhood search and individual crossover iteratively improve the current solution 

u Finally, when a predetermined wall-clock time or condition is reached, the current solution is 
output as the final optimization result
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Settings

� Dataset
u Four widely used NP-hard benchmark MILPs: Set Covering (SC, Minimize), Minimum Vertex 

Covering (MVC, Minimize), Maximum Independent Set (MIS, Maximize), Mixed Integer Knapsack 
Set (MIKS, Maximize) 

u One real-world large-scale MILP in the internet domain (Case Study, Maximize)
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Comparison of Objective Value

� Compared to the large-scale solvers SCIP and Gurobi, Light-MILPopt obviously outperforms 

them only using a scale-limited version solver with variable proportion 𝛼 = 30%

� The proposed framework achieves better results than the GNN&GBDT frameworks in 

integer programs with the same scale of variable reduction, efficiently solving large-scale 

MILPs, which cannot be solved by the GNN&GBDT framework
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Comparison of Running Time

� Compared to the large-scale baseline solvers, the proposed framework can achieve the 

same results in only 0.5% of the time for the benchmark MILPs, including SC1, MVC1, 

MIS1 and MIKS1

� Even compared to the state-of-the-art ML-based frameworks, our Light-MILPopt can save 

more than 90% of the time on most MILPs to achieve the same results
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Convergence Performance Analysis

� Convergence is an essential metric for evaluating the performance of optimization 

frameworks.  It can be seen that the proposed framework can obtain high-quality 

solutions for large-scale MILPs with only small-scale training data and a small-scale 

optimizer, and the convergence performance of Light-MILPopt is not weaker than that 

of the state-of-the-art solver Gurobi as well as the state-of-the-art ML-based 

optimization framework

(a) The minimized SC problem.  (b) The minimized MVC problem.  (c) The minimized MIS problem.
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Conclusion

� Future work
u Ultra-large-scale
u Multi-objective
u Nonlinear constraint
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