Light-MILPopt: Solving Large-scale Mixed
Integer Linear Programs with Lightweight
Optimizer and Small-scale Training Dataset

Huigen Ye, Hua Xu*, Hongyan Wang

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China

Contents

@ Introduction
® Method
© Experiments

® Conclusion

Background

@ Many real-world optimization problems in the real world can be abstracted as mixed
integer linear programming problems (MILPs)

¢ Routing
¢ Schedulingp2
¢ Timetabling3
@ Formally, the MILPs can be defined as follows

S)
min ¢’ X,
) (1)

subject to Ax < b,/ < x < u,x; € Z,1 €1,

Challenge

© GNN&GBDT-guided optimizing framework (SOTA) :

Firstly, representing MILPs as an entire graph poses challenges in terms of model training and
computational resources, particularly when tackling large-scale MILPs

+ Secondly, GNN requires large-scale MILP instances of similar size as training data, leading to
significant computational and storage resource demands during the training phase

¢ Thirdly, the problem reduction is exclusively applied at the decision variable level, neglecting
potential synergy with constraint reduction, thereby resulting in limited effectiveness in
problem reduction

--
. . .
.

Bipartite Graph GNN with Half

s I - Neighborhood . s
with Random Feat Convolutions . : =/ Initial Solution Search elgSea(:(r:hoo ﬁelghborhooﬁ .
= - - Crossover H
e Search with H
‘ ' Fixed Radius —> | Fixed Radius EEEE
@ @ >H -
-> :

_ Multi-task Loss Function | ¢ ggltlllr: !
Graph Partition B Small I

Optim _)

node’s .: 5 . .] variable to be optimized _- I_—_l
@. embedding * : Y [optimized variable s D D
- ; RO [o |_|

E n m E E : E = :

: X1 @ ‘ Oconstraint node : E . ul

: » ‘ variable node : E . - —

:[Training Dataset With | : : 5 @ ‘ . de’ - S Neighborhood Partition

H i ; = 1) /" node’s I "

: Optimal Solution i @) partiion 1% i @ fixed variable

X=[3,1,0,,-2]

g »

. . . .
.....
“sasssssssssssssmmmnns® "tusssssssssssssEEEssssssssnnnnsannnnnnnnnnt® “sssssssssssssssEEnnnst® S assaEEEEEEEEEEEEEEEEEEEEEEEE RN EEE TS RS EEd SRS TE FEd senann s

Contents

@ Introduction
® Method
© Experiments

® Conclusion

Overview

®

Light-MILPopt is divided into four stages: Problem Formulation, Model-based Initial

Solution Prediction, Problem Reduction, Data-driven Optimization. The proposed

lightweight optimization framework can solve large-scale MILPs with only smal
optimizer and small training dataset.

--

Problem Reduction
Formulation :[T
Constraint Reduction

Dataset

Variables Reduction
-
[
L

Bipartite Graph
Representation

Large-scale MIP

incixg+ -+ cpxy .
Yapx ot agmx< by |2

2

Trim high-confidence|
decision variables

AmiX1 + o F ApnXn < b

Trim redundant constraints

--

: s i Model Based Initial Solution Predictjon Updated Constraints pdated Constraints & Neighborhood
: = / Graph Partition-based . EGAT with Half N . i : Neighborhood f
.. . A H Neural Prediction . Search Initial Solution Neighborhood
Smal_ltr'l"rgmlrlllg Da:aset : ;| Problem Segmentation | : : [Convolutions for Every\ f u icti e SearI: v}:ith Crossover
mall-scale i .
with Sma i @ Subgrap : Fixed Radius Fixed Radius
Optimizer i @ 03 . - IO
X=[3,1,0,.....,-2] |i: @ L S
NS JE P >
% x))ii| EERRR P EEEEE]

O node’s partition edge to be deleted == mm node’s embedding -2 predict value redundant constraint {2 [fixed variable CIE variable to be optimized [optimized variable

low confidence I optimal variable redundant to be deleted

Oconstraint node .variable node @:: current solution constraint 22 high confidence °3

redundant to be added

|-scale

uonN|os JuaIINg

= Optimal
= Solution

Z_
o

ol

.

| 1U

Problem Formulation

@ Problem Formulation: problem division to reduce model computational costs
+ Initially, the MILP to be solved is represented as a bipartite graph

¢ Then the FENNEL graph partition algorithm combined with the idea of Graph-Bert subgraph
partition is used for problem division to reduce computational cost

¢ Based on the above steps, all the subgraphs obtained from the graph partition form the inputs
for feature-embedding neural networks

- -

IP instance

PN
Bipartite graph representation FENNEL graph partition algorithm ||;|| |mhﬂ

I

Model-based Initial Solution Prediction

using a small-scale training dataset

¢ Given the graph representation with multiple small-scale subgraphs for the large-scale MILP,
EGAT with Half-convolutions learns the neural embedding for the decision variables

¢ Then the Neural Prediction network with Multi-Layer Perceptron (MLP) structure predicts the
initial value of the corresponding decision variable in the subgraph through the neural
embedding

+ Finally, the predicted initial solution will guide the subsequent problem reduction

Variable
nodes

(03 i I po(z1 = 1|M)

Multi-Layer
Perceptron
v po(xi7 = 1| M)
Constraint iy |
Constraint Edge Variable Constraint Edge Variable Constraint Edge Variable nodes Bernoulli Distributions
i for Binary Variables
Step 1 Step 2 Step 3 Inferred Node Embeddings y

N
EGAT with Half-convolutions Neural Prediction ﬁm[]ﬂ

I

Problem Reduction

® Problem Reduction: both variable and constraint reduction

¢ Given the predicted initial solution of the MILP, the generalized confidence threshold method
adaptively fixes the high-confidence decision variable to achieve Variables Reduction

¢ Then, KNN strategy is used for Constraint Reduction to identify active constraints.

+ Finally, the reduction of decision variables and constraints can jointly guide the initial solution
search and iterative optimization

|
L
|

2

Trim high-confidence
decision variables

I_ J

Trim redundant constrair;ts

Variables Reduction Constraint Reduction

Data-driven Optimization

@ Data-driven Optimization: current solution improvement employing a lightweight
optimizer
¢ Based on the predicted initial solution and the problem reduction, we first solve the reduced
subproblem to obtain the Initial Solution for the complete MILP using lightweight optimizer

¢ Then, under the guidance of Neighborhood Updating and the active Constraint Set Updating,
neighborhood search and individual crossover iteratively improve the current solution

¢ Finally, when a predetermined wall-clock time or condition is reached, the current solution is
output as the final optimization result

........ '-:::.:...;. R LT T .:-:‘-.......................' @ . ‘ . ‘ ‘ .
ket T T

lllll
lllllllllllllll
"

.: -: ’, ‘_‘ Lz~ au]
10 Constraint Set Updating Neighborhood search and individual crossover HIﬁﬁﬂﬂiﬂ_

Contents

@ Introduction
® Method
© Experiments

® Conclusion

11

Settings

® Dataset

¢ Four widely used NP-hard benchmark MILPs: Set Covering (SC, Minimize), Minimum Vertex
Covering (MVC, Minimize), Maximum Independent Set (MIS, Maximize), Mixed Integer Knapsack

Set (MIKS, Maximize)

¢ One real-world large-scale MILP in the internet domain (Case Study, Maximize)

Number of Number of

Problem Scale Variables Constraints
SC SCy 200000 200000
(Minimize) SCsy 2000000 2000000
MVC MV(C, 100000 300000
(Minimize) MVC, 1000000 3000000
MIS MIS, 100000 300000
(Maximize) MIS, 1000000 3000000
MIKS MIKS, 200000 200000
(Maximize) MIKS, 2000000 2000000
CAEISMOY (Gase Study 2040000 100003
(Maximize)

12

Comparison of Objective Value

® Compared to the large-scale solvers SCIP and Gurobi, Light-MILPopt obviously outperforms

them only using a scale-limited version solver with variable proportion a = 30%

@ The proposed framework achieves better results than the GNN&GBDT frameworks in

integer programs with the same scale of variable reduction, efficiently solving large-scale
MILPs, which cannot be solved by the GNN&GBDT framework

SC 1 SCz MVC 1 MVC2 MIS 1 MIS 2 MIKS 1 MIKSz Case Study
Ours-30%S 17121.51T 166756.07 27337.817 273014.67 22621.71 227074.57 35067.87 355887.61T 944086.41
Ours-30%G 17047.31 16397591 27223.31 272579.51 22658.07 227305417 3553341 357439.57 979797.8%
GBDT-30%S 17222.2 261174.0 275154 276306.9 22389.3 223349.8 - - -
GBDT30%G 18487.6 281021.2 27700.8 281234.5 221159 210019.2 - - -
Ours-50%S 1614727 166966.91T 26956.87 26977137 22963.61T 230278.117 36125.517 357483.87 944166.17
Ours-50%G 16108.17T 160015.51T 26950.77 269571.57 22966.51 230432.917 36108.27 362265.1T 980688.01
GBDT50%S 16728.8 268294.9 27107.9 21002 22795.7 227006.4 - - -
GBDT50%G 17503.4 252797.2 273299 274600.8 22530.1 215393.6 - - -
SCIP 25191.2 385708.4 312754 491042.9 18649.6 9104.3 29974.7 168289.9 924954.5
Gurobi 17934.5 320240.4 28151.3 283555.8 21789.0 216591.3 32960.0 329642.4 - |
1 Time 2000s 12000s 2000s 8000s 2000s 8000s 2000s 6000s 1000s

_

Comparison of Running Time

@ Compared to the large-scale baseline solvers, the proposed framework can achieve the

same results in only 0.5% of the time for the benchmark MILPs, including SC1, MV(Cj,
MIS1 and MIKS1

@ Even compared to the state-of-the-art ML-based frameworks, our Light-MILPopt can save

more than 90% of the time on most MILPs to achieve the same results

SC, SCs MVC, MVC, MIS, MIS- MIKS; MIKS- Case Study
Ours-30%S 1998.1s7 11823.0st 1951.6sT 7967.2sT 1951.6sT 7967.2sT 1982.0sT 11980.4s1T 996.4s71
Ours-30%G 1166.8s1T 5645.0sT 1475.3st 6453.3st 1487.3st 7250.5s1 593.9s1 7941.9s7 511.5s7
GBDT-30%S >48369.2s >60000s >60000s >60000s >60000s >60000s - - -
GBDT30%G >30347.8s >60000s >60000s >60000s >60000s >60000s - - -
Ours-50%S 352.257T 11441.3sT 203.1sT 1815.3st1 225.9s1T 1945.7s1t 194.9s71 9576.1sT 776.2sT
Ours-50%G 177.8s1 1795.4st 193.8s1 1503.3s1 223.5s7 2062.7sT 160.5s1 2137.8s7T 506.9s1
GBDT50%S 587.6s >60000s 297.6s 7570.5s 348.6s 5920.7s - - -
GBDT50%G 5041.6s >60000s 29320.5s 21397.3s 4227.1s 27952.9s - - -
SCIP >60000s >60000s >60000s >60000s >60000s >60000s >60000s >60000s 3097.0s
Gurobi >60000s >60000s >60000s >60000s >60000s >60000s 45599.4s >60000s 2584.7s
Target 17121.5 166756.0 27337.8 273014.6 22621.7 227074.5 35067.8 355887.6 944086.4

Convergence Performance Analysis

@ Convergence is an essential metric for evaluating the performance of optimization

15

frameworks. It can be seen that the proposed framework can obtain high-quality

solutions for large-scale MILPs with only small-scale training data and a small-scale

optimizer, and the convergence performance of Light-MILPopt is not weaker than that

of the state-of-the-art solver Gurobi as well as the state-of-the-art ML-based

optimization framework

320000 A

300000 A

280000 A

260000 A

Objective

200000 A

180000 -

160000

220000

(a) The minimized SC problem.

—— GNN&GBDT30%G
—— GNN&GBDT50%G

Ours30%G
Ours50%G

Gurobi

0

2000

4000

60I00
Time

8000

10000 12000

350000

340000 -

330000 -

320000 -

310000 -

Objective

300000 -

|
290000 -

2800001 |\

270000 -

—— 0urs30%G
Ours50%G

—— GNN&GBDT30%G

—— GNN&GBDT50%G

~—— Gurobi

(b) The minimized MVC problem. (c) The minimized MIS proble

1000 2000 3000 4000 5000 6000 7000 8000

Time

230000 -
220000 -

2100001 |

jective

Ob

170000

160000

200000 -

190000 -

180000 -

—— 0urs30%G
Ours50%G

—— GNN&GBDT30%G
—— GNN&GBDT50%G

——— Gurobi

2000

40I00
Time

6000

8000

e~
nﬂﬁﬁ

a

I

Contents

@ Introduction
® Method
© Experiments

® Conclusion

16

Conclusion

® Future work

¢ Ultra-large-scale
¢ Multi-objective
¢ Nonlinear constraint

: Timaif_

References

10.
11.

12.

18

RV Kulkarni and Pramod R Bhave. “Integer Programming Formulations of Vehicle Routing Problems”. In: European Journal of
Operational Research 20.1 (1985), pp. 58-67.

Armin Fegenschuh. “Solving a School Bus Scheduling Problem with Integer Programming”. In: European Journal of Operational
Research 193.3 (2009), pp. 867-884.

Armann Ingolfsson et al. “Combining Integer Programming and the Randomization Method to Schedule Employees”. In: European
Journal of Operational Research 202.1 (2010), pp. 153-163.

Jiayi Zhang et al. “A Survey for Solving Mixed Integer Programming via Machine Learning”. In: Neurocomputing 519 (2023), pp. 205—
217.

Michel Bitnichou et al. “Experiments in Mixed-integer Linear Programming”. In: Mathematical Programming 1 (1971), pp. 76-94.
David Applegate et al. Finding Cuts in the TSP (A Preliminary Report). Citeseer, 1995.

Tobias Achterberg. “SCIP: Solving Constraint Integer Programs”. In: Mathematical Programming Computation 1.1 (2009), pp. 1-41.
Matteo Fischetti, Fred Glover and Andrea Lodi. “The Feasibility Pump”. In: Mathematical Programming 104 (2005), pp. 91-104.

Edward Rothberg. “An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions”. In: INFORMS Journal on
Computing 19.4 (2007), pp. 534-541.

David Pisinger and Stefan Ropke. “Large Neighborhood Search”. In: Proceedings of Handbook of metaheuristics. 2010.

Nicolas Sonnerat et al. “Learning a Large Neighborhood Search Algorithm for Mixed Integer Programs”. In: arXiv preprint
arXiv:2107.10201 (2021).

Jerome H Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”. In: Annals of Statistics (2001), pp. 1189-1232.

Timaif_

