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Background: Instance-level GNN Explainability
Instance-level GNN Explainability: it focuses on identifying important nodes, edges or subgraphs behind a GNN model’s specific 
predictions, these explanations are generated per individual data instance. 

Problem Formulation: Our goal is to generate a faithful explanation for each graph instance                        by identifying a subset 
of edges              , which are important to the predictions, given a GNN          pretrained on a set of graphs    . 

Most existing methods train an auxiliary model to explain GNNs, which causes the “Explain a black box with another black box” 
problem, making the explanations less transparent or reliable. 

Our approach GOAt has the following advantages: 

● Transparent and Faithful: It forwardly determines the attribution of each edge at the output. It avoids the training of auxiliary 
models and directly computes the attribution of each edge to the GNN prediction, which allows GOAt to be more faithful to 
the GNN itself, hence have better discriminative capability and stability across the same-class samples.

● Handling discrete inputs: The design nature of GOAt offers to handle the discrete inputs more effectively, compared with 
methods like Integrated Gradients that always consider the inputs as continuous. For example, the elements in the 
adjacency matrix can be {0, 1} indicating the absence or presence of edges between pairs of nodes. Any values between 
{0,1} are not relevant to the problem, as they do not carry any accumulating meaning.

● Statistically convincing: GOAt passes the sanity check that the attribution scores for input features add up to the difference 
in the GNN’s output with and without those features, whereas most of the search-based approaches or learning-based 
approaches cannot.



Toy Example of GOAt

IF YOU FLIP THE COIN THREE TIMES. AND 
RECORD THE RESULTS AS X, Y, Z. I WILL 

GIVE YOU 10*X*Y*Z BUCKS.
OKAY.

1 0

ILLUMI
MOM

There are only two possible outcomes: $10 or $0. 
Any of X, Y, Z being 0 will result in $0. Therefore, 
“X=1”, “Y=1”, “Z=1” is equally important to the 

outcome “$10”.



High-level Idea of GOAt

Expansion form of the output representation: The output matrix of a GNN can be described as the outcome of a linear 
transformation involving the input matrices (A,X) and the GNN parameters (W,B). As a result, each element within the output matrix 
can be represented as the sum of scalar products that involve entries from both the input matrices and the GNN parameters. Each 
edge appears in only some of the scalar products. Consequently, we can determine the attribution of an edge, such as A_{11}, by 
summing its contribution across all the scalar products in which it participates. 

Equal Contribution: Consider a scalar product term                              . z=10 only when                                   , otherwise z=0. This 
implies that the presence of all edges is equally essential for the resulting value of z = 10. Therefore, each of the three edges 
contributes 1/3 to the output, resulting in an attribution of 10/3.

For details please see our published paper at: https://openreview.net/forum?id=2Q8TZWAHv4

https://openreview.net/forum?id=2Q8TZWAHv4


Qualitative Results

Based on the explanations from GOAt, we have observed that the GNN effectively recognizes the "house" motif that is associated with Class 1. 
In contrast, other approaches face difficulties in consistently capturing this motif. The Class 0 motifs in the Mutagenicity dataset generated by 
GOAt represent multiple connected carbon rings. This indicates that the presence of more carbon rings in a molecule increases its likelihood 
of being mutagenic (Class 0), while the presence of more "C-H" or "O-H" bonds in a molecule increases its likelihood of being non-mutagenic 
(Class 1). Similarly, in the NCI1 dataset, GOAt discovers that the GNN considers a higher number of carbon rings as evidenced of chemical 
compounds being active against non-small cell lung cancer. Other approaches, on the other hand, fail to provide clear and 
human-understandable explanations. 



Experimental Results: (Stability)

To quantify the relative consistency for data samples with similar properties, we introduce the stability metric, which measures the coverage of 
the top-k explanations across the dataset. An ideal explainer should generate explanations that cover a larger number of data samples using 
fewer motifs.  Our approach surpasses the baselines by a considerable margin in terms of the stability of producing explanations. Specifically, 
GOAt is capable of providing explanations for all the Class 1 data samples using only three explanations. This explains why there are only three 
Class 1 scatters visible the scatter plot of GOAt on BA-2Motifs.



Experimental Results: (Discriminability)

Discriminability refers to the ability of the explanations to distinguish between the classes. We define the discriminability between two classes 
c1 and c2 as the L2 norm of the difference between the mean values of explanation embeddings of the two classes. The embeddings used for 
explanations are taken prior to the last-layer classifier. In this procedure, only the explanation subgraph S is fed into the GNN instead of the 
whole graph G. 

Due to the significant performance gap between the baselines and GOAt, a logarithmic scale is employed. Our approach consistently 
outperforms the baselines in terms of discriminability across all sparsity levels, demonstrating its superior ability to generate accurate and 
reliable class-specific explanations. Notably, at sparsity = 0.7, GOAt achieves higher discriminability than the original graphs on the BA-2Motifs 
and NCI1 datasets. This indicates that GOAt effectively reduces noise unrelated to the investigated class while producing informative class 
explanations.



Experimental Results: (Discriminability)

The explanations generated by GNNExplainer fail to exhibit class discrimination, 
as all the data points are clustered together without any distinct
separation. While some of the Class 1 explanations produced by PGExplainer, 
PGM-Explainer, RG-Explainer, RCExplainer, SubgraphX and DEGREE are 
separate from the Class 0 explanations, the majority of the data points remain 
closely clustered. 

In contrast, GOAt provides more discriminative explanations, which exhibit 
greater dispersion in the scatter plot. Furthermore, compared to the original 
embeddings, the explanations generated from GOAt demonstrate higher 
confidence towards specific classes, as evidenced by the scale of the scatter 
plots. 



Experimental Results: (Fidelity)

Recall that fidelity is the decrease of predicted probability between original and new predictions after removing important edges, which are 
used to evaluate the faithfulness of explanations. Fidelity is compared at different sparsity levels, where sparsity is the percentage of edges 
that remain in G after the removal of the explanation edges. 

Our proposed approach, GOAt, achieve the state-of-the-art fidelity performance across all sparsity levels, validating its superior performance in 
generating accurate and reliable faithful explanations. Among the other methods, RCExplainer exhibits the highest fidelity, as it is specifically 
designed for fidelity optimization. Notably, unlike the other methods that require training and hyperparameter tuning, GOAt offers the 
advantage of being a training-free approach, thereby avoiding any errors across different runs.



Thanks!
Presenter: Shengyao Lu shengyao@ualberta.ca

Code: https://github.com/sluxsr/GOAt
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