Simple Minimax Optimal Byzantine Robust Algorithm for Nonconvex Objectives with Uniform Gradient Heterogeneity
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Byzantine tolerant nonconvex Federated Learning (FL) is focused:

« Simple Byzantine robust method combined with Screening and
momentum is proposed.

« Theoretically, minimax optimal rate 0(6%¢%) is achieved for
objectives with ¢-uniform gradient heterogeneity.

« Empirically, our method enjoys better performances over various
Byzantine attacks than existing methods.

Problem Settings

The following nonconvex minimizationis considered:

1
min f(x):= ?z fi(x),where G c [n] is the set of non Byzantine clients.
x€ER | | =
f; is typically the empirical or excess risk on local dataset associated
with client i.
In FL, f; # f; due to the heterogeneity of local dafasets.

Goal of this study:
Giveninput {f;}I=, containing Byzantine clients, find x safisfying
IVf(x)||? < & withbeing e as small as possible.

Motivations:
Some clients may behave abnormally in federated learning.

e Hardware crashes L e
*  Message corruption
 Poisoned data

*  Malicious false information

Robustness against abnormal
behaviors is important! :

........................................ %Bmadcast
: syersleworelevowre
e S e ——T
Local Training % Local Training Cg??‘;ﬁg Local Training %
Workerl Worker2 5 - :
Bel
Ao A fo o O

Theoretical Assumptions:

A1l. L-smoothness of f;.
A2. Existence of global minima x,.

A3. Sub-Gaussian tail bounds of minibatch stochastic gradient:

SZ
vx € R%,Vs = 0: P(llg; — Vfi(x)ll = 5) < 2exp <— —>

Used in our analysis
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A4. G-Lipschitzness of per-sample loss.
A5. C-uniform gradient heterogeneity:

rlnEaGX”Vﬁ(x) — l7fj(x)||2 < (2
A5’. ¢-mean gradient heterogeneity:

1

(6) it - Pl < 2
lEG

Cuon (O = {{fi}icc | A1 — A4, A5 hold}

Coun(Q) = {{f}icc | A1 — A4, A5’ hold} Cyn(§) < Cyp(9)
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The number of input {x;}i~, within a hyper-sphere of radius 0({)
i centered around x; is less than half of the total number of clients
= clienti isidentified as Byzantine and x; isremoved.

Traditional Robust Aggregation:

« Coordinate Median (CM) .
«  Trimmed Mean .

Theorem (Convergence Rate):

KRUM Letn < L a= 4+/6nL (< 0.5). For any {fi}iec € Cyn(O).
Geometric Median (RFA) 8V6 _ _ . fikes € Cun o
Momentum Screening with appropriate T = 0({) satisfies
Bucketing: T
A wrapper technique applicable to any robust aggregation. %Z”Vf(xt—l)nz <0 (A(;W> + 0(6282) + 0 <(% + 77L> (52 + I_él) 02>
Ui n
t=1

Giveninput {x;}}*,, create [n/s] random buckets, and apply a robust

agg. fo new input {yl_}mﬂ , where y; is the average of the i-th bucket. with high probability, where A, , = f(x®) — f(x*).
: 1 1 .
Centered Clipping (CClip): In particular, 1 = —= A (7=) yields

Given momentum {m;}i; and initial guess v of the ideal agg., we use,

T

T
l - 272
v +%Z?:1min{1,m} (m; — v). T;”Vﬂxt D12 < 0(8%32)

Theoretical Results: for sufficientlylarge T.

Given Byzantine fraction § < 0.5, Bucketing and CClip achieves
0(6¢?) optimization error for {f;}icc € Cryu ().

This rate is minimax optimal over €, ({) [Karimireddy et al., 2022].

Proposed Algorithm

Screening (inspired by [Alistarh et al., 2018])):

= The rate is better than the previous optimal rate 0(8¢?) for € ().

Theorem (Lower Bound for C;4(Q)):
For any opft. alg. 4, there exists {fi}g;‘g)” € Cyu (O and {fi}{L1_syn+1 ST

Vf (A ({fn(i)}:;l»”z > 0(8232),

where m is a random permutation on [n].

Er

This implies minimax optimality of MS on Cy 4 (!

o:. oo ° ° ok 0.0 Cuu(D: MS is
o® ° o .. minimax opt.
Client d‘ .:° °e
e gradients .B ® ® : Identified as Non-Byzantine CMH ((): CCIip is
[ ] [ ® : Identified as Byzantine S .
minimax opt.

Momentum (used in [Karimireddy et al., 2022]).

Empirical Validation of A5

Empirical Comparison of A5 and A5':

To reduce the stochastic noise, momentum is infroduced:
mt =1 —a)mi™ + agf,

where gf is a minibatch stochastic gradient of client i. Given {fiticc: Cmax ANA {,o0n denote ¢ defined in A5 and A5’ resp.

. . . tn
= Screening is applied to momentum {m;}-, for each round. Q. Is ¢,... much larger than g,.... practically?

Concrete Algorithm: A.NO! ¢, con/lmax = 0.3~0.9 in our experiments.

Momentum Screening (x°,7, a, 7):
t Forround t =1toT do: :
:  Forclienti € {1,..,n}in parallel do: 09

= Cyy(Q) isnot so small compared to €y, () empirically.
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(a) MNIST (b) CIFAR10 (c) Fed-EMNIST

Send arbitrary vector to the server. # Clienti is Byzantine
G = {i € [n]:|{j € [n]:|m; — m;|| < 7}| = 0.5n}. # Screened clients
X

~ Empirical values of ;;,ean/Cmax @long the trajectories of momentum SGD (a = 0.1) without
C=xt = n(1/161) T

Byzantine clients for FC, CNN, and VGG11 on MNIST, CIFAR10, and Fed-EMNIST.

Experimentl: Investigating robustness to various attacks

* Models: Fully Connected MLP (FC), VGGI 1

» Datasets: MNIST, CIFAR10 with non IID allocation

» Attacks: Bit Flipping (BF), Label Flipping (LF), Mimic, IPM, ALIE
* Methods: Average (Avg), CM, KRUM, RFA, CClip, MS

O Byzcmtine frac.: § = 3/20 Bucketing vx'/os applied.

Model/Data AGG ] BF LF Mimic IPM ALIE \ Worst
Avg 95.1+0.2 95.54+0.3 955+£0.3 94.8+0.1 B89.3£0.7 89.3£0.7
CM 93.1 + 0.6 93.3+£0.2 94.1 £ 0.6 91.4+0.6 88.2+3.2 88.2+3.2
FC/ KRUM 93.0£0.3 94.0£04 945+ 1.0 928+04 951+£0.1 | 928+£0.3
MNIST RFA 94.7+0.2 95.3+0.3 953+ 0.4 93.7+0.2 90.2+0.5 90.2+0.5
CClip 94.8+0.2 95.2£0.3 954+ 0.3 93.7£0.2 93.2+04 93.2+04

MS (ours) 95.2£0.2 954+03 955403 945401 94.94+0.2 | 94.5 1+ 0.1

Avg 99.34+0.1 99.3+0.1 99.4+0.1 99.3+0.1 308=£151 | 30.8+15.1

CM 99.24+0.1 99.1 +0.1 99.3 +0.1 99.1+0.0 67.0£10.5 | 67.0x10.5

VGGI11/ KRUM 98.9+0.1 99.2+0.1 99.0+0.1 98.7+0.1 99.2+0.1 98.7+0.1
MNIST RFA 99.3+0.1 99.3+0.1 993+01 99.3+0.1 728£347 | 7T2.8+£34.7
CClip 99.34+0.1 99.3£0.1 993+01 99.34+0.1 0953+28 95.3+2.8

MS (ours) 99.34+0.1 99.34+0.0 99.3+0.1 99.0+03 99.34+0.0 | 99.0+ 0.3

Avg 46.7+1.3 46.9+1.4 46.1+1.2 46.7+1.3 252+£33 252+£3.3

CM 39.6 +£2.2 39.6+£09 40.2+1.6 3T6+£1.3 274 +1.7 274+1.7

FC/ KRUM 35.6+1.9 386£1.2 382+£34 333+£14 377 £25 33721
CIFAR10 RFA 46.2+£0.7 46.7 £ 0.8 45.9+2.0 458 £ 1.0 29.0 £3.7 29.0£3.7
CClip 4454+1.2 45.7£0.6 44.0£3.5 409+1.0 354£08 354£08

MS (ours) 46.3+1.1 46.2£1.3 452+ 1.6 458 +1.9 45.04+2.5 | 44.6 £2.0

Avg 84.34+0.9 85.0£0.4 85.1+08 84.5+0.3 192+13 19.24+1.3

CM 45.6+2.5 43.7£4.3 57.2£9.2 34.9+£3.7 19.1+1.9 19.1+1.9

VGGI1l/ KRUM 55.8+£25 642+ 1.8 70.3 +2.2 40.6 £4.8 T1.9+£83 40.6 £4.8
CIFARI10 RFA 82.7+0.3 83.9£0.2 842+04 815+ 0.6 203£1.3 20313
CClip TT9+0.7 81.3+£0.6 81.3+0.6 642+18.3 22.7+2.3 22.7+2.3

MS (ours) 84.2+£04 846 £0.6 84.8£0.9 835+08 833434 )| 828+25

Experiment2: Investigating test acc gap for Byzantine frac. changes
* Models: Fully Connected MLP (FC), VGGI1

* Datasets: MNIST, CIFAR10 withnon IID allocation

« Attacks: Bit Flipping (BF), Label Flipping (LF), Mimic, IPM, ALIE

*  Methods: CClip, MS

* Byzantine frac.: § € {1/20,2/20,3/20,4/20,5/20,7/20,9/20}
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Y-axis shows the gap between the best test acc of momentum SGD without Byzantine
clients and the worst best test acc against 5 attacks and in log scale (smaller is better).

Results:

Both on Experiments1 and 2, MS outperformed the other methods
including CClip and Bucketing in terms of the worst best test acc
against 5 attacks.

= MS is empirically robust compared with the existing methods!
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