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Byzantine tolerant nonconvex Federated Learning (FL) is focused:

• Simple Byzantine robust method combined with Screening and 
momentum is proposed.

• Theoretically, minimax optimal rate 𝑶(𝜹𝟐𝜻𝟐) is achieved for 
objectives with 휁-uniform gradient heterogeneity. 

• Empirically, our method enjoys better performances over various 

Byzantine attacks than existing methods.

Overview Review of Existing Algorithms

Problem Settings

Theorem (Convergence Rate):
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Momentum Screening with appropriate 𝜏 = Θ(휁) satisfies
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with high probability, where Δ0,∗ ≔ 𝑓 𝑥0 − 𝑓 𝑥∗ . 
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for sufficiently large 𝑇.

⇒ The rate is better than the previous optimal rate 𝑶(𝜹𝜻𝟐) for 𝑪𝑴𝑯(𝜻).

Theorem (Lower Bound for 𝑪𝑼𝑯(𝜻)):

For any opt. alg. 𝑨, there exists 𝑓𝑖 𝑖=1
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∈ 𝑪𝑼𝑯 𝜻 and 𝑓𝑖 𝑖= 1−𝛿 𝑛+1
𝑛 s.t.
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≥ 𝛀 𝜹𝟐𝜻𝟐 ,

where 𝜋 is a random permutation on [𝑛].

This implies minimax optimality of MS on 𝑪𝑼𝑯(𝜻)!
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Traditional Robust Aggregation:

Bucketing:

A wrapper technique applicable to any robust aggregation.

Given input 𝑥𝑖 𝑖=1
𝑛 , create 𝑛/𝑠 random buckets, and apply a robust 

agg. to new input 𝑦𝑖 𝑖=1
𝑛/𝑠

, where 𝑦𝑖 is the average of the 𝑖-th bucket.  

Centered Clipping (CClip):

Given momentum 𝑚𝑖 𝑖=1
𝑛 and initial guess 𝑣 of the ideal agg., we use,

𝑣 +
1

𝑛
σ𝑖=1
𝑛 min 1,

𝜏

𝑚𝑖−𝑣
(𝑚𝑖 − 𝑣).

Theoretical Results:

Given Byzantine fraction 𝛿 < 0.5, Bucketing and CClip achieves 
𝑂(𝛿휁2) optimization error for 𝑓𝑖 𝑖∈𝐺 ∈ 𝑪𝑴𝑯(𝜻).

This rate is minimax optimal over 𝑪𝑴𝑯(𝜻) [Karimireddy et al., 2022]. 
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[Karimireddy et al., 2022]: Byzantine-Robust Learning on 

Heterogeneous Datasets via Bucketing.

[Alistarh et al., 2018]: Byzantine Stochastic Gradient Descent.

The following nonconvex minimization is considered:

min
𝑥∈ℝ𝑑

𝑓 𝑥 ≔
1

|𝐺|


𝑖∈𝐺

𝑓𝑖(𝑥) , 𝑤ℎ𝑒𝑟𝑒 𝐺 ⊂ [𝑛] 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑜𝑛 𝐵𝑦𝑧𝑎𝑛𝑡𝑖𝑛𝑒 𝑐𝑙𝑖𝑒𝑛𝑡𝑠.

𝑓𝑖 is typically the empirical or excess risk on local dataset associated 

with client 𝑖.

In FL, 𝑓𝑖 ≠ 𝑓𝑗 due to the heterogeneity of local datasets. 

Goal of this study:

Given input {𝑓𝑖}𝑖=1
𝑛 containing Byzantine clients,  find 𝑥 satisfying 

𝛻𝑓 𝑥 2 ≤ 휀 with being 휀 as small as possible. 

Motivations:

Some clients may behave abnormally in federated learning.

• Hardware crashes

• Message corruption

• Poisoned data

• Malicious false information

Theoretical Assumptions: 

A1.  𝐿-smoothness of 𝑓𝑖.

A2.  Existence of global minima 𝑥∗.

A3.  Sub-Gaussian tail bounds of minibatch stochastic gradient: 

∀𝑥 ∈ ℝ𝑑 , ∀𝑠 ≥ 0: ℙ 𝑔𝑖 − 𝛻𝑓𝑖 𝑥 ≥ 𝑠 ≤ 2 exp −
𝑠2

2𝜎2
.

A4.  𝐺-Lipschitzness of per-sample loss.

A5.  휁-uniform gradient heterogeneity:

max
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A5’. 휁-mean gradient heterogeneity:
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𝑪𝑼𝑯 𝜻 ≔ {{𝑓𝑖}𝑖∈𝐺 𝑨𝟏 − 𝑨𝟒,𝑨𝟓 ℎ𝑜𝑙𝑑

𝑪𝑴𝑯 𝜻 ≔ {{𝑓𝑖}𝑖∈𝐺 | 𝑨𝟏− 𝑨𝟒,𝑨𝟓′ ℎ𝑜𝑙𝑑}

Screening (inspired by [Alistarh et al., 2018]):

The number of input {𝑥𝑖}𝑖=1
𝑛 within a hyper-sphere of radius Θ(𝜻)

centered around 𝑥𝑖 is less than half of the total number of clients

⇒ client 𝑖 is identified as Byzantine and 𝑥𝑖 is removed.

Momentum (used in [Karimireddy et al., 2022]): 

To reduce the stochastic noise, momentum is introduced:

𝑚𝑖
𝑡 = 1 − 𝛼 𝑚𝑖

𝑡−1 + 𝛼𝑔𝑖
𝑡 ,

where 𝑔𝑖
𝑡 is a minibatch stochastic gradient of client 𝑖.

⇒ Screening is applied to momentum 𝒎𝒊
𝒕
𝒊=𝟏
𝒏 for each round. 

Concrete Algorithm:

Used in our analysis

𝑪𝑼𝑯 𝜻 ⊂ 𝑪𝑴𝑯(𝜻)

Empirical Validation of A5 

Empirical Comparison of A5 and A5’:

Given {𝑓𝑖}𝑖∈𝐺 , 𝜻𝒎𝒂𝒙 and 𝜻𝒎𝒆𝒂𝒏 denote 휁 defined in A5 and A5’ resp. 

Q. Is 𝜻𝒎𝒂𝒙 much larger than 𝜻𝒎𝒆𝒂𝒏 practically?

A. No! 𝜻𝒎𝒆𝒂𝒏/𝜻𝒎𝒂𝒙 ≈ 0.3~0.9 in our experiments.

⇒ 𝑪𝑼𝑯(𝜻) is not so small compared to 𝑪𝑴𝑯(𝜻) empirically. 

Experiment1: Investigating robustness to various attacks

• Models: Fully Connected MLP (FC), VGG11

• Datasets: MNIST, CIFAR10 with non IID allocation

• Attacks: Bit Flipping (BF), Label Flipping (LF), Mimic, IPM, ALIE

• Methods: Average (Avg), CM, KRUM, RFA, CClip, MS

• Byzantine frac.: 𝛿 = 3/20

Experiment2: Investigating test acc gap for Byzantine frac. changes

• Models: Fully Connected MLP (FC), VGG11

• Datasets: MNIST, CIFAR10 with non IID allocation

• Attacks: Bit Flipping (BF), Label Flipping (LF), Mimic, IPM, ALIE

• Methods: CClip, MS

• Byzantine frac.: 𝛿 ∈ {1/20, 2/20,3/20, 4/20, 5/20,7/20,9/20}

Results:

Both on Experiments1 and 2, MS outperformed the other methods 

including CClip and Bucketing in terms of the worst best test acc
against 5 attacks.

⇒ MS is empirically robust compared with the existing methods!
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• Coordinate Median (CM)

• Trimmed Mean

• KRUM

• Geometric Median (RFA)

Momentum Screening (𝑥0, 휂, 𝛼, 𝜏):

For round 𝑡 = 1 to 𝑇 do:

For client 𝑖 ∈ {1,… , 𝑛} in parallel do:

If 𝑖 ∈ 𝐺 then:

Compute minibatch stochastic gradient 𝑔𝑖
𝑡 at 𝑥𝑡−1.

Send 𝒎𝒊
𝒕 = 𝟏 − 𝜶 𝒎𝒊

𝒕−𝟏 + 𝜶𝒈𝒊
𝒕 (𝑚𝑖

0 = 𝑔𝑖
1) to the server.

Else:

Send arbitrary vector to the server.  # Client 𝑖 is Byzantine

𝑮 ≔ 𝒊 ∈ 𝒏 : 𝒋 ∈ 𝒏 : 𝒎𝒊 −𝒎𝒋 ≤ 𝝉 ≥ 𝟎.𝟓𝒏 . # Screened clients

𝑥𝑡 = 𝑥𝑡−1 − 휂 1/| 𝐺| σ
𝑖∈ 𝐺𝑚𝑖 .

𝑪𝑴𝑯(𝜻): CClip is 

minimax opt. 

𝑪𝑼𝑯(𝜻): MS is 

minimax opt. 

Empirical values of 휁𝑚𝑒𝑎𝑛/휁𝑚𝑎𝑥 along the trajectories of momentum SGD (𝛼 = 0.1) without 

Byzantine clients for FC, CNN, and VGG11 on MNIST, CIFAR10, and Fed-EMNIST.  

Numerical Results

Bucketing was applied.

Y-axis shows the gap between the best test acc of momentum SGD without Byzantine 

clients and the worst best test acc against 5 attacks and in log scale (smaller is better).

Robustness against abnormal 

behaviors is important! 


