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Diffusion-Guided 3D Generation

With score distillation sampling (SDS) techniques, we could use pre-trained 2D

difftusion model for 3D asset generation.

“A turtle flying a kite
at sunset.”
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Drawbacks of SDS for 3D Generation

Slow Convergence

= DreamFusion: 6 TPU hours conflicts with coarse-to-fine cannot handle low-frequency bias of
= Magic3D: 5.3 A100 hours . .
= Fantasia3D: 6 RTX3090 hours generation nature early 3D renderings

= ProlificDreamer: several A100 hours
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Observation 1: Mathematical Formulation

We contrast SDS loss:

Lsps(¢, xt) = E t~ld (1,T) w(t)||€(xe;y,t) — €3

with DDPM sampling process, i.e.,fort =T - 1.
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The randomly uniform t-sampling in SDS for 3D Generation is unaligned with the
non-increasing t-sampling in DDPM for 2D Generation.




Observation 2: Supervision Misalignment

For diffusion models, score prediction provides different granularity of supervision
at different timestep t: from coarse structure to fine details as t decreases.

Rendered 1000 750 500 250 1
Image x Timestep t



Observation 2: Supervision Misalignment

As SDS optimization proceeds, the trained 3D representation (e.g.,
NeRF) presents a coarse-to-fine process, in which different stages
prefer different granularity of supervision.

However, randomly uniform timestep sampling in the vanilla SDS

makes such requirements difficult to guarantee. o
Misalignment !

| >

3D Rendered Images with SDS Optimization in Progress



Observation 3: Out-of-Distribution Inputs

The OOD issue is significant when using rendered images from the early training
stage (low-frequency bias) as diffusion inputs and timestep t is small.
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Observation 3: Out-of-Distribution Inputs

We provide an 2D generated example to demonstrate that low-frequency bias in
the initial input image (common in NeRF) could lead to low-diversity generation.
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Method: Time Prioritized Score Distillation

We argue that non-increasing t-sampling (indicated by --») is more effective for
diffusion-guided 3D optimization compared to randomly uniform t-sampling.
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Method: Time Prioritized Score Distillation

Based on the characteristics of diffusion training and 3D generation, we carefully
design a weight function W (t) to modulate the timestep descent process.

1.0

\
\
\

081

o
o
L

Prior weight W (t)
o
=

e
[N

=== Wu(®)
- Wp@®
e W
Diffusion .‘ o
Prior
I W) = () = Wy(t) - W (D)

. Perception
\@m Prior

-~
-~
-~
~
-~
-~
-y
-~
N
-~

~
"Ny

1000

660 460
Timestep t
(a) Prior weight function W (t).

800 200 1

1000
Coarse
800 A
= 600
o 0
o Informative
[«B)
E 400 -
l_ _________
200 - iled (Hiah . I
Detailed (High Variation) | -
.(
1 2k ak 6k 8k 10k

Iteration step i
(b) Weighted non-increasing t-sampling function t(i).



Results: Faster Convergence

The proposed Time Prioritized Score Distillation Sampling (TP-SDS) leads to

faster 3D content generation than the SDS baseline.
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Results: Better Quality

Our method can alleviate some common quality problems in SDS optimization,
such as , unsatisfactory geometry, and ,
as highlighted by the colored circles.
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Results: Higher Diversity

Given different random seeds, our TP-SDS is able to generate visually distinct
3D objects, while the results produced by SDS baseline all look alike.

“a baby bunny sitting on top of a stack of pancakes” “an 1ce cream sundae”
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Results: Versatility
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Thank you!

Please feel free to contact us if you have any questions:
yukun@hku.hk



