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Diffusion-Guided 3D Generation

With score distillation sampling (SDS) techniques, we could use pre-trained 2D 

diffusion model for 3D asset generation.
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Drawbacks of SDS for 3D Generation
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DreamFusion: 6 TPU hours

Magic3D: 5.3 A100 hours

Fantasia3D: 6 RTX3090 hours

ProlificDreamer: several A100 hours



with DDPM sampling process, i.e., for 𝑡 = 𝑇 → 1:

Observation 1: Mathematical Formulation

We contrast SDS loss:

The randomly uniform t-sampling in SDS for 3D Generation is unaligned with the 

non-increasing 𝑡-sampling in DDPM for 2D Generation.



Observation 2: Supervision Misalignment
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For diffusion models, score prediction provides different granularity of supervision 

at different timestep 𝑡: from coarse structure to fine details as 𝑡 decreases.



Observation 2: Supervision Misalignment

As SDS optimization proceeds, the trained 3D representation (e.g., 

NeRF) presents a coarse-to-fine process, in which different stages 

prefer different granularity of supervision.

3D Rendered Images with SDS Optimization in Progress

Misalignment !

However, randomly uniform timestep sampling in the vanilla SDS 

makes such requirements difficult to guarantee.



Observation 3: Out-of-Distribution Inputs

The OOD issue is significant when using rendered images from the early training 

stage (low-frequency bias) as diffusion inputs and timestep 𝑡 is small.



Observation 3: Out-of-Distribution Inputs

We provide an 2D generated example to demonstrate that low-frequency bias in 

the initial input image (common in NeRF) could lead to low-diversity generation.

Seed=0 Seed=1 Seed=2 Seed=3Normal Initial.

NeRF Initial. Seed=0 Seed=1 Seed=2 Seed=3

Text Prompt: “gingerbread man”



Method: Time Prioritized Score Distillation
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We argue that non-increasing 𝑡-sampling (indicated by      ) is more effective for 

diffusion-guided 3D optimization compared to randomly uniform 𝑡-sampling.



Method: Time Prioritized Score Distillation
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(a) Prior weight function 𝑊(𝑡). (b) Weighted non-increasing 𝑡-sampling function 𝑡(𝑖).
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Based on the characteristics of diffusion training and 3D generation, we carefully 

design a weight function 𝑊(𝑡) to modulate the timestep descent process.



Results: Faster Convergence

The proposed Time Prioritized Score Distillation Sampling (TP-SDS) leads to 

faster 3D content generation than the SDS baseline.



Results: Better Quality

Our method can alleviate some common quality problems in SDS optimization, 

such as attribute missing, unsatisfactory geometry, and compromised details, 

as highlighted by the colored circles.



Results: Higher Diversity

Given different random seeds, our TP-SDS is able to generate visually distinct 

3D objects, while the results produced by SDS baseline all look alike.



Results: Versatility



Thank you!

Please feel free to contact us if you have any questions:

yukun@hku.hk


