LipSim: A Provably Robust Perceptual Similarity Metric

A Defense Mechanism for Perceptual Metrics against Adversarial Attacks

Sara Ghazanfari, Alexandre Araujo, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg

New York University April 18, 2024

Low-level Metrics

- Point-wise metrics Including ℓ_p norms.
- Fail to capture the high-level structure, and the semantic concept.

Perceptual Similarity Metrics

- Neural networks are used as feature extractors.
- Low-level metrics are employed in the embeddings of images in the new space.
 - LPIPS (R Zhang): a convolutional neural network
 - DreamSim (S Fu): an ensemble of ViT-based models

Perceptual metrics align better with human perception.

R Zhang, The unreasonable effectiveness of deep features as a perceptual metric (2018) S Fu, DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data (2023)

Training Perceptual Metrics – 2AFC dataset

Two-alternative forced choice (2AFC) dataset

- BAPPS (R Zhang) dataset.
- NIGHT (S Fu) dataset.

R Zhang, The unreasonable effectiveness of deep features as a perceptual metric (2018) S Fu, DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data (2023)

Motivation

Perceptual Similarity Metrics are not robust to adversarial attacks!

Method

Definition (L_f -Lipschitz function)

Let f be a Lipschitz function with L_f Lipschitz constant in terms of ℓ_2 norm, then we can bound the output of the function by:

$$||f(x) - f(x+\delta)||_2 \le L_f ||\delta||_2$$

The Lipschitz constant of neural networks quantifies how much their outputs can change when inputs are perturbed.

Step 1: Lipschitz-based Student-Teacher training of embeddings

Step 2: Lipschitz finetunning on Night Dataset

LipSim

Let $f: \mathcal{X} \to \mathbb{R}^k$ such that:

$$f(x) = \pi_{B_2(0,1)} \circ \phi^{(l)} \circ \dots \circ \phi^{(1)}(x)$$

where l is the number of layers, $\pi_{B_2(0,1)}$ is a projection on the unit ℓ_2 ball, *i.e.*, $\pi_{B_2(0,1)}(x) = \arg\min_{z \in B_2(0,1)} \|x - z\|_2.$

Let f be the feature extractor function, the LipSim distance metric $d(x_1, x_2)$ is defined as:

$$d(x_1, x_2) = 1 - S_c(f(x_1), f(x_2))$$

Certified Robustness for 2AFC datasets.

$$h(x) = \begin{cases} 1, & d(x, x_1) \le d(x, x_0) \\ 0, & d(x, x_1) > d(x, x_0) \end{cases}$$

Soft Classifier

Let us define a soft classifier $H:\mathcal{X}\to\mathbb{R}^2$ with respect to some feature extractor f as follows:

$$H(x) = [d(x, x_1), d(x, x_0)]$$

It is clear that $h(x) = \arg \max_{i \in \{0,1\}} H_i(x)$ where H_i represent the *i*-th value of the output of H.

Theorem

Let $H: \mathcal{X} \to \mathbb{R}^2$ be the soft classifier as defined earlier. Let $\delta \in \mathcal{X}$ and $\varepsilon \in \mathbb{R}^+$ such that $\|\delta\|_2 \leq \varepsilon$. Assume that the feature extractor $f: \mathcal{X} \to \mathbb{R}^k$ is 1-Lipschitz and that for all x, $\|f(x)\|_2 = 1$, then we have the following result:

$$M_{H,x} \ge \varepsilon \|f(x_0) - f(x_1)\|_2 \implies M_{H,x+\delta} \ge 0$$

Based on Theorem, and assuming $x_1 \neq x_0$, the certified radius for the classier h at point x can be computed as follows:

$$R(h, x) = \frac{M_{H, x}}{\|f(x_0) - f(x_1)\|}_2$$

Experiments

Experiments – Empirical Score

Metric/ Embedding	Natural Score	ℓ_2 -APGD			
		0.5	1.0	2.0	3.0
CLIP	93.91	29.93	8.44	1.20	0.27
OpenCLIP	95.45	72.31	42.32	11.84	3.28
DINO	94.52	81.91	59.04	19.29	6.35
DreamSim	96.16	46.27	16.66	0.93	0.93
LipSim (ours)	85.58	82.89	79.82	72.20	61.84

Direct Attack to LipSim

• Direct ℓ_2 -PGD attack ($\epsilon = 1.0$) to LipSim and DreamSim by employing the following MSE loss is used during the optimization:

$$\max_{\delta: \|\delta\|_2 \le \varepsilon} \mathcal{L}_{\mathsf{MSE}} \left[f(x+\delta), f(x) \right]$$

• The histogram of $d(x, x + \delta)$

Thanks for Your Attention!