
Potential function: 
, 

where  and . 

- Use average cocoercivity of  and recursive variance bound of PAGE to show:  
.

𝒞k =
η

2λk
∥F(uk) + gk∥2 + ⟨F(uk) + gk, uk − u0⟩ + ck∥F(uk) − F̃(uk)∥2

gk =
1
η (λk−1u0 + (1 − λk−1)uk−1 − ηF̃(uk−1) − uk) ∈ G(uk) ck =

( n + 2)(k + 4)
4L

F
𝔼[𝒞k+1] ≤ (1 − λk)𝔼[𝒞k]

Variance Reduced Halpern Iteration 
for Finite-Sum Monotone Inclusions

Problem Setting

• Assumptions: For any , the operator  is 
1.monotone and -Lipschitz: ,  

2. -Lipschitz in expectation: , given an oracle  

and distribution such that ; 

3. -cocoercive on average:  ; 

and the operator  is possibly multi-valued and maximally monotone 
with access to the resolvent  of  for  (generalizing the proximal operator). 

• Applications: constrained finite-sum minimization, variational inequality (VI) 
problems, robust machine learning, adversarial training, multi-agent RL. 

• Optimality measure:  
, 

for some  and hence . 

• computable in most cases as the algorithms have access to , 
• implies other optimality measures (such as duality gap for VI problems), 
• meaningful for some classes of structured non-monotone operators. 

• Oracle complexity: the number of calls to to make an optimality measure small 
(the number of calls to the resolvent if of the same order).

u, v ∈ ℝd F(u) : ℝd → ℝd

LF ⟨F(u) − F(v), u − v⟩ ≥ 0 ∥F(u) − F(v)∥ ≤ LF∥u − v∥,

LQ 𝔼ξ∼Q∥Fξ(u) − Fξ(v)∥2 ≤ L2
Q∥u − v∥2 Fξ

𝔼[Fξ(u)] = F(u)

1/L ⟨F(u) − F(v), u − v⟩ ≥ 1
nL ∑n

i=1 ∥Fi(u) − Fi(v)∥2

G(u) : ℝd ⇉ ℝd

JηG ηG η > 0

ResF+G(u) = ∥F(u) + g(u)∥
g(u) ∈ G(u) dist(F(u) + G(u), 0) = min

g(u)∈G(u)
∥F(u) + g(u)∥ ≤ ResF+G(u)

F(u) + g(u)

Numerical Results
Compare with extragradient (EG) (Korpelevich, 1977), constrained anchored extragradient (EAG) (Cai et al., 
2022b), and variance-reduced extragradient (VR-EG) (Alacaoglu & Malitsky, 2022). Use uniform sampling for 
all algorithms and tune the step size for each method individually. 
• Matrix game:  with simplex constraints ( ) and the policeman and burglar matrix (Nemirovski, 2013). 
• Quadratic program:  with  and the difficult instance for establishing lower 

bounds for min-max optimization (Ouyang & Xu, 2021).

minx∈Δm1 maxy∈Δm2⟨Ax, y⟩ m1 = m2 = 500

minx∈ℝm1 maxy∈ℝm2
1
2 x⊤Hx − h⊤x − ⟨Ax − b, y⟩ m1 = m2 = 200
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Find u* ∈ ℝd such that 0 ∈ F(u*) + G(u*),  where F = 1
n ∑n

i=1 Fi

Cocoercive Case
Recipe:  stochastic constrained Halpern Iteration  +  PAGE (Li et al., 2021) 

Monotone and Lipschitz Case (Cont.)

Convergence Analysis

Recipe:  inexact Halpern Iteration  +  VR-FoRB (subsolver)

• Resolvent approximation (VR-FoRB): Let  be monotone and -Lipschitz in expectation with 
. Let  be maximally monotone, and  be -strongly monotone. Given , VR-FoRB 

returns  such that  in  
  

iterations and oracle queries. 
• Inexact Halpern iteration: Let  be -Lipschitz in expectation, then we have  

• , 
• ,

A LA

A = ∑n
i=1 Ai B A + B μ ε̄ > 0

vM 𝔼[∥vM − v*∥2] ≤ ε̄2

O((n + nLA/μ)log(∥v0 − v*∥/ε̄))

F L
𝔼k[∥ek∥2] ≤ ∥Pη(uk)∥/(k + 2)8

𝔼[∥Pη(uk)∥] ≤ (𝔼[∥Pη(uk)∥2]) ≤ 7∥u0 − u*∥/k

Fig. 1: Matrix game
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Fig. 2: Quadratic program

Contributions
★The first  variance-reduced complexity result for the residual 

guarantee when  is either average -cocoercive or monotone and -Lipschitz in 
expectation, that could lead to a  improvement compared to the methods without 
variance reduction. This guarantee is also on the last-iterate.

�̃�(n + nLε−1)
F 1/L L

n

Table: Comparison of our results with state of the art in the monotone Lipschitz settings.

Improved Complexity
Under Assumptions 1 and 3: 

, 

  stochastic oracle complexity. 
• Up to  improvement compared to complexity results   of 

deterministic algorithms (Diakonikolas, 2020).  
• Improve in the regime  compared to complexity results for infinite-

sum stochastic settings in Cai et al. (2022a); Chen & Luo (2022). 
• Provide the best-known guarantees (among direct approaches) with a single-

loop algorithm for finite-sum minimization.

𝔼[ResF+G(uk)] ≤ (𝔼[Res2
F+G(uk)])1/2 ≤

16L∥u0 − u*∥
k + 4

⇒ �̃�(n + nLε−1)
n �̃�(nLFε−1)

ε = o(1/ n)

Monotone and Lipschitz Case
Recipe
• For any , finding a point  with  is sufficient to guarantee 

 , where  is -cocoercive. We can 
replace  in the guarantee by a computable output. 

• (Stochastic) inexact Halpern iteration converges at an optimal rate with 
appropriate level of inexactness: 

, 

where  is an approximation of  and . 

• Approximating  corresponds to solving the strongly monotone and 
expected Lipschitz MI with finite-sum structure, which can be computed fast 
(Alacaoglu & Malitsky, 2022).

η > 0 u ∥Pη(u)∥ ≤ ηε
ResF+G(Jη(F+G)(u)) ≤ ε Pη(u) := u − Jη(F+G)(u) 1/2

Jη(F+G)(u)

uk+1 = λku0 + (1 − λ)J̃η(F+G)(uk) = λku0 + (1 − λ)(uk − Pη(uk)) − (1 − λ)ek

J̃η(F+G) Jη(F+G) ek = Jη(F+G)(uk) − J̃η(F+G)(uk)

Jη(F+G)

Improved Complexity
Under Assumptions 1 and 2, given accuracy , to return a point   such that  with 

, the stochastic oracle complexity is  
. 

• Leads to high probability guarantees using a confidence boosting mechanism. 
• Up to  improvement compared to complexity results   of deterministic algorithms for the 

residual (Diakonikolas, 2020; Yoon & Ryu, 2021). 
• Implies prior gap guarantee results (Alacaoglu & Malitsky, 2022; Carmon et al., 2019) which are 

suboptimal for the residual. The implication also ensures the near-optimality of our results. 
• Extends to -cohypomonotone settings with  for any  such that .

ε > 0 uk 𝔼[∥Pη(uk)∥] ≤ ηε
η = n /L

�̃�(n + nLε−1)

n �̃�(nLFε−1)

ρ G ≡ 0 η > 0 ρ < min{η/2,1/ηL2
F}
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