Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions

Problem Setting

Find $\mathbf{u}_{*} \in \mathbb{R}^{d}$ such that $\mathbf{0} \in F\left(\mathbf{u}_{*}\right)+G\left(\mathbf{u}_{*}\right)$, where $F=\frac{1}{n} \sum_{i=1}^{n} F_{i}$
Assumptions: For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{d}$, the operator $F(\mathbf{u}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
1.monotone and $L_{F}-L i p s c h i t z: ~\langle F(\mathbf{u})-F(\mathbf{v}), \mathbf{u}-\mathbf{v}\rangle \geq 0,\|F(\mathbf{u})-F(\mathbf{v})\| \leq L_{F}\|\mathbf{u}-\mathbf{v}\|$, 2. L_{Q}-Lipschitz in expectation: $\mathbb{E}_{\xi \sim \sim}\left\|F_{\xi}(\mathbf{u})-F_{\xi}(\mathbf{v})\right\|^{2} \leq L_{Q}^{2}\|\mathbf{u}-\mathbf{v}\|^{2}$, given an oracle F_{ξ} and distribution such that $\mathbb{E}\left[F_{\varepsilon}(\mathbf{u})\right]=F(\mathbf{u})$;
3. 1/L-cocoercive on average: $\langle F(\mathbf{u})-F(\mathbf{v}), \mathbf{u}-\mathbf{v}\rangle \geq \frac{1}{n L} \sum_{i=1}^{n}\left\|F_{i}(\mathbf{u})-F_{i}(\mathbf{v})\right\|^{2}$ and the operator $G(\mathbf{u}): \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is possibly multi-valued and maximally monotone with access to the resolvent $J_{\eta G}$ of ηG for $\eta>0$ (generalizing the proximal operator). Applications: constrained finite-sum minimization, variational inequality (VI) problems, robust machine learning, adversarial training, multi-agent RL. Optimality measure
for
for some $g(\mathbf{u}) \in G(\mathbf{u})$ and hence $\operatorname{dist}(F(\mathbf{u})+G(\mathbf{u}), \mathbf{0})=\min _{g(\mathbf{u}) G(\mathbf{u})}\|F(\mathbf{u})+g(\mathbf{u})\| \leq \operatorname{Res}_{F+G}(\mathbf{u})$

- computable in most cases as the algorithms have access to $F(\mathbf{u})+g(\mathbf{u})$,
- implies other optimality measures (such as duality gap for VI problems),
- meaningful for some classes of structured non-monotone operators.

Oracle complexity: the number of calls to to make an optimality measure small (the number of calls to the resolvent if of the same order).

Contributions

\star The first $\tilde{O}\left(n+\sqrt{n} L \varepsilon^{-1}\right)$ variance-reduced complexity result for the residual guarantee when F is either average $1 / L$-cocoercive or monotone and L-Lipschitz in expectation, that could lead to a \sqrt{n} improvement compared to the methods withou variance reduction. This guarantee is also on the last-iterate

Referenene	Complexity for Res_{F+G}	$\begin{aligned} & \text { Complexity } \\ & \text { for Gap } \end{aligned}$	Assumpion	$\begin{aligned} & \text { High } \\ & \text { Probability } \\ & \text { Result } \end{aligned}$		
Kovalev \& Gassikov (2022)	$\mathcal{O}\left(n L_{F \varepsilon^{-1}}\right)$	$\mathcal{O}\left(n L_{F \varepsilon^{-1}}\right)$	Assumption 1	N/A		
Nemirovsi (204)	$\mathcal{O}\left(n L_{F}^{2} \varepsilon^{-2}\right)$	$\mathcal{O}\left(n L_{F \varepsilon^{-1}}\right)$	Assumpion 1	N/A		
Caie tal. (2022a)	$\left.\mathcal{O}\left(\sigma^{2} L+L^{3}\right) e^{-3}\right)$	$\left.\mathcal{O}\left(\sigma^{2} L+L^{3}\right) e^{-3}\right)$	Assumption $1,2, G \equiv 0$ $\mathbb{E}_{i}\left\\|F_{i}(\mathbf{x})-F(\mathbf{x})\right\\|^{2} \leq \sigma^{2}$	-		
Luoetal. (2021)	$\tilde{\mathcal{O}}\left(\sigma^{\left(\varepsilon^{2} \varepsilon^{-2}+L_{F} \varepsilon^{-1}\right)}\right.$	$\tilde{\mathcal{O}}\left(\sigma^{2} \varepsilon^{-2}+L_{F} \varepsilon^{-1}\right)$		-		
Carmon etal. (2019)	-	$\tilde{\mathcal{O}}\left(n+\sqrt{n} L \varepsilon^{-1}\right)$	$\begin{gathered} \text { Assumption } 1,2 \\ \text { bounded domain } \\ (\mathrm{cf.} \mathrm{Sec} 5.4 \\ \text { in }(\text { Carmon et al., 2019)) } \end{gathered}$	-		
Palaniapan \& Bach (2016)	-	$\tilde{\mathcal{O}}\left(n+\sqrt{n} L \varepsilon^{-1}\right)$		-		
Alacaglu \& Malitsky (2022)	-	$\mathcal{O}\left(n+\sqrt{n} L \varepsilon^{-1}\right)$		-		

Xufeng Cai*1, Ahmet Alacaoglu*2, Jelena Diakonikolas ${ }^{1}$
 Wisconsin Institute for Discovery, University of Wisconsin-Madison

Monotone and Lipschitz Case (Cont.)
Recipe: inexact Halpern Iteration + VR-FoRB (subsolver)
Input: $\mathbf{u}_{0} \in \mathbb{R}^{d}, L=L_{Q}$ with the distribution $Q=\left\{q_{i}\right\}_{i=1}^{n}, n, \eta=\frac{\sqrt{ } n}{L}$

\section*{for $k=0,1, \quad$ do}
 $=56(n+\sqrt{n}) \log (2 k+4)\rceil$
 $J_{\eta(F+G)}\left(\mathbf{u}_{k}\right)=\operatorname{VR}-\operatorname{FoRB}\left(\mathbf{u}_{k}, M_{k}, \operatorname{Id}+\eta(F+G)-\mathbf{u}_{k}, Q\right)$

$\mathbf{u}_{k+1}=\lambda_{k} \mathbf{u}_{0}+\left(1-\lambda_{k}\right) \widetilde{J}_{\eta(F+G)}\left(\mathbf{u}_{k}\right)$

Convergence Analysis

- Resolvent approximation (VR-FoRB): Let A be monotone and L_{A}-Lipschitz in expectation with $A=\sum_{i=1}^{n} A_{i}$. Let B be maximally monotone, and $A+B$ be μ-strongly monotone. Given $\bar{\varepsilon}>0$, VR-FoRB returns \mathbf{v}_{M} such that $\mathbb{E}\left[\left\|\mathbf{v}_{M}-\mathbf{v}_{*}\right\|^{2}\right] \leq \bar{\varepsilon}^{2}$ in

$$
O\left(\left(n+\sqrt{n} L_{A} / \mu\right) \log \left(\left\|\mathbf{v}_{0}-\mathbf{v}_{*}\right\| / \bar{\varepsilon}\right)\right)
$$

iterations and oracle queries

- Inexact Halpern iteration: Let F be L-Lipschitz in expectation, then we have
- $\mathbb{E}_{k}\left[\left\|\mathbf{e}_{k}\right\|^{2}\right] \leq\left\|P^{\eta}\left(\mathbf{u}_{k}\right)\right\| /(k+2)^{8}$
- $\mathbb{E}\left[\left\|P^{\eta}\left(\mathbf{u}_{k}\right)\right\|\right] \leq\left(\mathbb{E}\left[\left\|P^{\eta}\left(\mathbf{u}_{k}\right)\right\|^{2}\right]\right) \leq 7\left\|\mathbf{u}_{0}-\mathbf{u}_{*}\right\| / k$

Improved Complexity

Under Assumptions 1 and 2, given accuracy $\varepsilon>0$, to return a point \mathbf{u}_{k} such that $\mathbb{E}\left[\left\|P^{\eta}\left(\mathbf{u}_{k}\right)\right\|\right] \leq \eta \varepsilon$ with $\eta=\sqrt{n} / L$, the stochastic oracle complexity is

$$
\tilde{O}\left(n+\sqrt{n} L \varepsilon^{-1}\right) .
$$

- Leads to high probability guarantees using a confidence boosting mechanism
- Up to \sqrt{n} improvement compared to complexity results $\tilde{O}\left(n L_{F} \varepsilon^{-1}\right)$ of deterministic algorithms for the residual (Diakonikolas, 2020; Yoon \& Ryu, 2021).
- Implies prior gap guarantee results (Alacaoglu \& Malitsky, 2022; Carmon et al., 2019) which are suboptimal for the residual. The implication also ensures the near-optimality of our results.
- Extends to ρ-cohypomonotone settings with $G \equiv 0$ for any $\eta>0$ such that $\rho<\min \left\{\eta / 2,1 / \eta L_{F}^{2}\right\}$.

Numerical Results

Compare with extragradient (EG) (Korpelevich, 1977), constrained anchored extragradient (EAG) (Cai et al., 2022b) and variance-reduced extragradient (VR-EG) (Alacaoglu \& Malitsky, 2022). Use uniform sampling for all algorithms and tune the step size for each method individually.
 Quadratic program: $\min _{x \in \mathbb{R}^{m} 1} \max _{y \in \mathbb{R}^{m}} \frac{1}{2} \mathbf{x}^{\top} \mathbf{H x}-\mathbf{h}^{\top} \mathbf{x}-\langle\mathbf{A x}-\mathbf{b}, \mathbf{y}\rangle$ with $m_{1}=m_{2}=200$ and the difficult instance for establishing ower bounds for min-max optimization (Ouyang \& Xu, 2021).

Fig. 1: Matrix game

2: Quadratic program

