Variance Reduced Halpern Iteration
for Finite-Sum Monotone Inclusions

Find u. € R¢ such that 0 € F(u.) + G(u.), where F = Z F,
e Assumptions: For any u,v € R¢, the operator F(u): RY - R%is
1.monotone and L -Lipschitz: (F(u) — F(v),u —v) >0, ||[F(u) — FV)|| < Lg|lu-v]||,

2.LQ-Lipschitz in expectation: E_,||F:(w) — F(v)||* < Lj|lu - v||*, given an oracle F;
and distribution such that E[F(u)] = F(u);

3. 1/L-cocoercive on average: (F(u)— F(v),u—v) > i > IF @) — FwlI%
and the operator G(u): R? = R?is possibly multi-valued and maximally monotone

with access to the resolvent J ; of 4G for n > 0 (generalizing the proximal operator).

* Applications: constrained finite-sum minimization, variational inequality (VI)
problems, robust machine learning, adversarial training, multi-agent RL.
* Optimality measure:
Respig(u) = ||[F(u) + g(w)],

for some g(u) € G(u) and hence dist(F(u) + G(u),0) = min

gWEG(u)
« computable in most cases as the algorithms have access to F(u) + g(u),
 implies other optimality measures (such as duality gap for VI problems),
« meaningful for some classes of structured non-monotone operators.
e Oracle complexity: the number of calls to to make an optimality measure small
(the number of calls to the resolvent if of the same order).

|F(w) + g)|| < Respig(u).

Contributions

* The first 6(n + \/ZLe‘l) variance-reduced complexity result for the residual
guarantee when F is either average 1/L-cocoercive or monotone and L-Lipschitz in

expectation, that could lead to a v/n improvement compared to the methods without
variance reduction. This guarantee is also on the last-iterate.

Table: Comparison of our results with state of the art in the monotone Lipschitz settings.
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Complexity Complexity
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Kovalev & Gasnikov (2022) O (nLF e ! ) O (nL FE . ) Assumption 1 N/A
Nemirovski (2004) O (nL%s B 2) O(nLpe™ 1 ) Assumption 1 N/A
. 3\ 3\ Assumption 1,2, G = 0
Cai et al. (2022a) O((e*L+L%e™%)  O((e*L+L%e%) o ”;ff‘(xp) linF(x)Hz < 2 -
Assumption 1, G = 0
Luo et al. (2021) O(c?c 2+ Lpe~) O(o%c 2+ Lpe™) F=( vv"fcrg?xy%) -
E; || F;(x) — F(x)|| < o
Assumption 1, 2
= -1 bounded domain
Carmon et al. (2019) — O(n+ /nLe™ 1) (cf. Sec 5.4 _
in (Carmon et al., 2019))

Assumption 1, 2

Palaniappan & Bach (2016) = @) (n+ vnLe™ 1) })Cc;ur(lg(;di:gr;ang e
in (Palaniappan & Bach, 2016))

Assumption 1, 2

Alacaoglu & Malitsky (2022) — O (n + /nLe™ 1) (cf. Assumption 1(iv) —
in (Alacaoglu & Malitsky, 2022))

[Our results, Theorem 4.2] O(n + vnLe™?) O(n + v/nLe?) Assumption 1, 2 v
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Recipe: stochastic constrained Halpern Iteration + PAGE (Li et al.,

4L,batch size b= [v/n], \1 =
F(ul) — F(ul)

Input: uy € RY, step size n =
— %F(uo)),
do

Pk+1 = {

= Jya(Aeug + (1 — Ak)ug — nF(ug))

U] = J%G(u

fork=1,2,...
4
k+5

4
Jnt5

Vk < \/n
Vk > \/n

k+4°

Ak

Ur+1

Sample Sx+1 C {1,...
E(uk+1)
F(ur) + 3 Yies,., (Fi(ug+1)

~

W.p. Pk+1;
F(ugq1) = .

— Fi(ugx)) wp.1—pry1.

Convergence Analysis
Potential function:

,n} without replacement and uniformly at random with |Si41| = b

€= g”F(Uk) + g lI° + (F(up) + g w, — up) + ¢ | F(wy) — F(uy)||%,
k
1 i /1 +2)(k +4)
where g, = ;(lk_luo + (1 = h_puwe_ — nFu_) —u,) € Gy and ¢, = 7 :

- Use average cocoercivity of /' and recursive variance bound of PAGE to show:
E[€] < (A = AE[EG,].

Improved Complexity
Under Assumptions 1 and 3:

16L”u0 — U ”
E[Resp, )] < (E[Resz, ;(uy)]

1/2
) k+4

= O(n ++/nLe~") stochastic oracle complexity.
« Up to \/Z improvement compared to complexity results O(nL.e~!) of
deterministic algorithms (Diakonikolas, 2020).

- Improve in the regime ¢ = o(1/4/n) compared to complexity results for infinite-

sum stochastic settings in Cai et al. (2022a); Chen & Luo (2022).
* Provide the best-known guarantees (among direct approaches) with
loop algorithm for finite-sum minimization.

Monotone and Lipschitz Case

Recipe

* For any > 0, finding a point u with ||P’7(u)|| < ne is sufficient to guarantee
J,r+ W) IS 1/2-cocoercive. We can

Resryc(J,ric(W) < €, where P'(u) ;= u -
replace J, s (w in the guarantee by a computable output.

* (Stochastic) inexact Halpern iteration converges at an optimal rate with

appropriate level of inexactness:

uk+1 - ﬂkuO + (1 ) (F+G)(llk) - ﬂkllo + (1 - ﬁ)(uk

where J, ., is an approximation of J, z.,, and e, = J, . ¢\(W) — J, 5.6 (Wp).
« Approximating J, ., corresponds to solving the strongly monotone and
expected Lipschitz MI with finite-sum structure, which can be computed fast

(Alacaoglu & Malitsky, 2022).
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Pi(wy) — (1 — Dey,

| on Optimization

Monotone and Lipschitz Case (Cont.)

2021) Recipe: inexact Halpern lteration’ + VR-FoRB (subsolver)
Input: uy € R¢, L = Lg with the distribution Q = {¢;}*_,,n,n = @
fork=0,1,2,...do
Bt Sh . o APA-p) - o,
Ak = k%uz, My = [56(71 + +/n) log(2k + 4)] Inputs vo = wo =Wy =u,p= o =1 p,7= Y2, disubution @ = {g:}1_,

fork=0,1,..., M —1do
Vi =avi + (1 — a)wyg
Sample i € {1,..., n} according to Q
Vis1 = Jrp(Vi — T[A(Wi) — (ngi) " Ai(Wi-1) + (ng:) "' Ai(vi)])

- _ JVk+1 WP.p
s Wi wp.1—0p

=777(F+G)(U—k) = VR—FoRB(uy, M, Id+ n(F + G) — ug, Q)

~

Ui = Ao + (1 — M) Jprra) (ug)

Convergence Analysis

* Resolvent approximation (VR-FoRB): Let A be monotone and L,-Lipschitz in expectation with
A=Y" A, Let Bbe maximally monotone, and A + B be u-strongly monotone. Given & > 0, VR-FoRB
returns v,, such that E[||v,, — v.||?] < & in

O((n +/nLy/u)log(|lvg — v-|1/8))
iterations and oracle queries.
* Inexact Halpern iteration: Let F be L-Lipschitz in expectation, then we have
o Exllledl”] < 1P (upll/(k + 2)%,

» E[IIP"(apll] < ELIP"lI’D) < 7llug — wl/k,

Improved Complexity

Under Assumptions 1 and 2, given accuracy ¢ > 0, to return a point u, such that E[||P"(u)||] < e with

= y/n/L, the stochastic oracle complexity is
O(n++/nLe™")

 Leads to high probability guarantees using a confidence boosting mechanism.

« Up to v/n improvement compared to complexity results &(nL.¢~") of deterministic algorithms for the
residual (Diakonikolas, 2020; Yoon & Ryu, 2021).

 Implies prior gap guarantee results (Alacaoglu & Malitsky, 2022; Carmon et al., 2019) which are
suboptimal for the residual. The implication also ensures the near-optimality of our results.

« Extends to p-cohypomonotone settings with G = 0 for any » > 0 such that p < min{#/2,1/5L2}.

Numerical Results

Compare with extragradient (EG) (Korpelevich, 1977), constrained anchored extragradient (EAG) (Cai et al.,
2022Db), and variance-reduced extragradient (VR-EG) (Alacaoglu & Malitsky, 2022). Use uniform sampling for

all algorithms and tune the step size for each method individually.
« Matrix game: min,,» maxycan(AX,y) with simplex constraints (m,

a single-

= m, = 500) and the policeman and burglar matrix (Nemirovski, 2013).
« Quadratic program: min, g MaXycgpn, %XTHX —h'x — (Ax — b, y) with m; = m, = 200 and the difficult instance for establishing lower

bounds for min-max optimization (Ouyang & Xu, 2021).
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