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Abstract
Classifier-free guidance (CFG) is a pivotal technique for balancing the diversity and
fidelity of samples in conditional diffusion models. This approach involves utilizing
a single model to jointly optimize the conditional score predictor and unconditional
score predictor, eliminating the need for additional classifiers. It delivers impressive
results and can be employed for continuous and discrete condition representations.
However, when the condition is continuous, it prompts the question of whether
the trade-off can be further enhanced. Our proposed inner classifier-free guidance
(ICFG) provides an alternative perspective on the CFG method when the condi-
tion has a specific structure, demonstrating that CFG represents a first-order case
of ICFG. Additionally, we offer a second-order implementation, highlighting that
even without altering the training policy, our second-order approach can introduce
new valuable information and achieve an improved balance between fidelity and
diversity for Stable Diffusion.

Contributations
• We introduce ICFG and analyze the convergence of its Taylor expansion under
specific conditions.
• We demonstrate that CFG can be regarded as a first-order ICFG and propose a
second-order Taylor expansion for our ICFG.
• We apply the second-order ICFG to the Stable Diffusion model and observe that, re-
markably, our new formulation yields valuable information and enhances the trade-off
between fidelity and diversity, even without modifying the training policy.

Preliminary
We assume that this diffusion process follows a SDE:

dx = f(x, t)dt + g(t)dw. (1)

The score function is defined as follows:

s(x, t) = ∇xt
log q(xt). (2)

Then, the reverse-time SDE is:

dx = [f(x, t)− g(t)2s(x, t)]dt + g(t)dw. (3)

For the unconditional diffusion score ϵθ(x, t), using the same set of classifiers, the
modified diffusion score is given by:

ϵ̃θ(xt, c, t) = ϵθ(xt, t)− (w + 1)βt∇xt
log pθt (c|xt)

= −βt∇xt

[
log qθ(xt) + (w + 1) log pθt (c|xt)

]
.

(4)

The main idea behind CFG is to use a single model to simultaneously fit both the
conditional score predictor and the unconditional score predictor. This is achieved by
randomly replacing the condition c with ∅ (an empty value). By doing so, one can

obtain the conditional score predictor ϵθ(x, c, t) and the unconditional score predictor
ϵθ(x, t), which is equivalent to ϵθ(x,∅, t). Then, because

∇xt
[log pt(c|xt)] = ∇xt

[log q(xt|c)− log q(xt) + log p(c)]

= ∇xt
[log q(xt|c)− log q(xt)] ,

(5)

which indicates that after applying the operator ∇xt
, we can replace the last term of

Equation (4) with log qθ(xt|c)− log qθ(xt) to achieve a similar effect. Then we get the
enhanced diffusion score:

ϵ̂θ(xt, c, t) = (w + 1)ϵθ(xt, c, t)− wϵθ(xt, t)

= −βt∇xt

[
log qθ(xt|c) + w(log qθ(xt|c)− log qθ(xt))

]
= −βt∇xt

[
log qθ(xt) + (w + 1)(log qθ(xt|c)− log qθ(xt))

]
,

(6)

whose enhanced intermediate distribution is:

qθ(xt|c) ∝ qθ(xt)

[
qθ(xt|c)
qθ(xt)

]w+1
. (7)

Methodology
Theorem 0.1.Given condition c, the enhanced transition kernel qθ0t(xt|x0, c) by
Eq. (7) equals to the original transition kernel qθ0t(xt|x0, c) = qθ0t(xt|x0) does not
hold trivially. Specifically, when w = 0 , the equation holds.

The question arises: Can we always ensure that β = 1?

Assumption 0.1.

C is a cone, which means ∀β ∈ R+,∀c ∈ C, βc ∈ C.
For each c ∈ C, ∥c∥ represents the guidance strength and c

∥c∥ represents the
guidance direction.

Under Assumption 0.1, we define q̄θ(xt|c) = qθ(xt|c, β) ≜ qθ(xt|βc). Based on this
definition, we can state the following Corollary 0.1.1:

Corollary 0.1.1.Given condition c and the guidance strength β = w + 1, we
have:

qθ0t(xt|x0, c, β) = qθ0t(xt|x0).

The following algorithm offers a practical solution and can be effectively applied to
mitigate the aforementioned problem.

Experiment
Evaluation Metrics. We evaluate the widely-used Frechet Inception Score (FID)
between the generated images and the target domain images, and CLIP Score between
generated images and captions on the MS-COCO validation set.
Results.


