From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module

^{*} Equal Contribution ¹Harvard University ²Sapienza University of Rome ³University of Oxford

International Conference on Learning Representations 2024, May 7-11, Vienna, Austria

inanziato all'Unione europea lextGenerationEU

We introduce the concept of Latent Topology Inference (LTI), whose goal is not (only) learning a graph but rather learning a higher-order combinatorial topological space describing multi-way interactions among data points

As a first instance of LTI, we introduce the Differentiable Cell Complex Module (DCM), a novel architecture that dynamically learns a latent regular cell complex to improve the downstream task

The DCM is tested on several homophilic and heterophilic datasets

Significant accuracy gains on heterophilic benchmarks with provided input graphs show that the DCM leads to robust performance even when the input graph does not fit the data well

Graph-based representation: data are associated with the vertices of a graph to capture pairwise relations encoded by the presence of links

Topological Deep Learning

Goals and Motivation

In many systems (biological, brain, social networks,...) the complex interactions among data cannot be reduced to dyadic relationships

(b) In Social Networks, agents can interact in a group without having pairwise connetions

(c) In Knowledge Graphs, higher-order relationship could provide further insight and analysis Topological Deep Learning Regular Cell Complexes

What topological descriptors do we need to incorporate higher-order relationships?

Go beyond graphs: Simplicial Complexes, Cell Complexes, Cellular Sheaves, ...

A graph is a cell complex of order 1, containing only cells of order 0 (nodes, in red) and 1 (edges, in blue). Here we consider a cell complex $C_{\mathcal{G}}$ of order 2 as a graph augmented with order 2 cells (*polygons*, in various colors) being some of its induced cycles.

From Latent Graph To Latent Topology Inference Differentiable Cell Complex Module 1

The Differentiable Cell Complex Module (DCM) is a function that first learns a graph describing the pairwise interactions among data points

Then, it leverages the graph as the skeleton of a regular cell complex describing multi-way interactions among data points

The inferred topology, i.e. the inferred edges and polygons, is then used in two message-passing networks at node and edge levels to solve the downstream task

The whole architecture is trained in an end-to-end fashion

From Latent Graph To Latent Topology Inference Differentiable Cell Complex Module 2

Both edge and polygon sampling is realized through the $\alpha\text{-entmax}$ class of functions

In this way, we obtain flexible, non-regular, and sparse topologies

Homophilic Numerical Results

		Cora	CiteSeer	PubMed	Physics	CS
	Model/Hom. lev	vel 0.81	0.74	0.80	0.93	0.80
w/o graph	MLP	58.92 ± 3.28	59.48 ± 2.14	85.75 ± 1.02	94.91 ± 0.28	87.80 ± 1.54
	KCM	78.47 ± 2.09	75.20 ± 2.41	86.66 ± 0.91	95.61 ± 0.18	95.14 ± 0.32
	DGM-E	62.48 ± 3.24	62.47 ± 3.20	83.89 ± 0.70	94.03 ± 0.45	76.05 ± 6.89
	DGM-M	70.85 ± 4.30	68.86 ± 2.97	$\textbf{87.43} \pm 0.40$	95.25 ± 0.36	92.22 ± 1.09
	DCM	78.80 ± 1.84	76.47 ± 2.45	87.38 ± 0.91	96.45 ± 0.12	95.40 ± 0.40
	DCM ($\alpha = 1$)	78.73 ± 1.99	76.32 ± 2.75	87.47 ± 0.77	96.22 ± 0.27	95.35 ± 0.37
w graph	GCN	83.11 ± 2.29	$69.97{\pm}\ 2.00$	85.75 ± 1.01	95.51 ± 0.34	87.28 ± 1.54
	GCN2	$\textbf{87.85} \pm 1.41$	78.53 ± 2.66	89.60 ± 0.70	$\textbf{97.41} \pm 0.34$	95.05 ± 0.38
	GAT	89.81 ± 1.77	78.18 ± 2.31	88.53 ± 0.61	98.87 ± 0.30	94.42 ± 0.70
	KCM	78.43 ± 2.11	75.23 ± 2.45	86.61 ± 0.95	96.16 ± 0.17	95.46 ± 0.36
	CWN	88.63 ± 1.91	75.53 ± 2.13	87.97 ± 0.77	96.23 ± 0.24	93.52 ± 0.59
	GCN+CCCN	86.09 ± 1.82	78.36 ± 3.33	88.59 ± 0.67	96.90 ± 0.30	95.31 ± 0.49
	DGM-E	82.11 ± 4.24	72.35 ± 1.92	87.69 ± 0.67	95.96 ± 0.40	87.17 ± 3.82
	DGM-M	86.63 ± 3.25	75.42 ± 2.39	87.82 ± 0.59	96.21 ± 0.44	92.86 ± 0.96
	DCM	85.78 ± 1.71	78.72 ± 2.84	88.49 ± 0.62	96.99 ± 0.44	95.79 ± 0.48
	DCM ($\alpha = 1$)	85.97 ± 1.86	$\textbf{78.60} \pm 3.16$	$\textbf{88.61} \pm 0.69$	96.69 ± 0.46	95.78 ± 0.49

Table: Homophilic-graph node classification (Test acc. in % avg.ed over 10 splits).

Heterophilic Numerical Results

Table: Heterophilic-graph node classification (Test acc. in % avg.ed over 10 splits).

		Texas	Wisconsin	Squirrel	Chameleon
	Model/Hom.	level 0.11	0.21	0.22	0.23
w/o graph	MLP	77.78 ± 10.24	85.33 ± 4.99	30.44 ± 2.55	40.35 ± 3.37
	KCM	84.12 ± 11.37	87.10 ± 5.15	35.15 ± 1.38	52.12 ± 2.02
	DGM-E	80.00 ± 8.31	88.00 ± 5.65	34.35 ± 2.34	48.90 ± 3.61
	DGM-M	81.67 ± 7.05	89.33 ± 1.89	35.00 ± 2.35	48.90 ± 3.61
	DCM	85.71 ± 7.87	87.49 ± 5.94	$\textbf{35.55} \pm 2.24$	$\textbf{53.63} \pm 3.07$
	DCM ($\alpha = 1$)	84.96 ± 10.24	86.72 ± 6.02	$\textbf{35.25} \pm 2.22$	$\textbf{53.67} \pm \textbf{3.19}$
w graph	GCN	41.66 ± 11.72	47.20 ± 9.76	24.19 ± 2.56	32.56 ± 3.53
	GCN2	75.50 ± 7.81	74.57 ± 5.38	33.09 ± 1.76	49.50 ± 3.02
	GAT	66.72 ± 11.22	60.52 ± 9.23	$\textbf{35.07} \pm 2.13$	50.73 ± 3.12
	KCM	83.92 ± 11.15	84.92 ± 5.21	34.47 ± 1.49	$\textbf{53.12} \pm 2.02$
	CWN	65.87 ± 6.33	64.57 ± 7.12	32.44 ± 2.75	43.86 ± 2.51
	GCN+CCCN	84.43 ± 9.11	84.03 ± 5.42	OOM	OOM
	DGM-E	60.56 ± 8.03	70.67 ± 10.49	29.87 ± 2.46	44.19 ± 3.85
	DGM-M	62.78 ± 9.31	76.00 ± 3.26	30.44 ± 2.38	45.68 ± 2.66
	DCM	84.87 ± 10.04	86.33 ± 5.14	34.95 ± 2.59	53.05 ± 3.00
	DCM ($\alpha = 1$)	84.96 ± 5.60	$\textbf{85.36} \pm 5.05$	$\textbf{35.13} \pm 2.27$	$\textbf{53.76} \pm 3.72$

LTI's Visualization

Evolution of the latent complex for the Texas dataset. Edges in orange, triangles in lilac, squares in purple ($K_{max} = 4$). Homophily levels h = [0.11, 0.44, 0.99].

Claudio's Linkedin https://www.linkedin.com/in/claudio-battiloro-b4390b175/ and X https://twitter.com/ClaBat9:

Contacts

Indro's Linkedin https://www.linkedin.com/in/indro-spinelli-770380123/ and X
https://twitter.com/IndroSpinelli:

