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Contribution

We introduce the concept of Latent Topology Inference (LTI), whose goal is not (only)
learning a graph but rather learning a higher-order combinatorial topological space
describing multi-way interactions among data points

As a first instance of LTI, we introduce the Differentiable Cell Complex Module (DCM), a
novel architecture that dynamically learns a latent regular cell complex to improve the
downstream task

The DCM is tested on several homophilic and heterophilic datasets

Significant accuracy gains on heterophilic benchmarks with provided input graphs show that
the DCM leads to robust performance even when the input graph does not fit the data well



Topological Deep Learning
Goals and Motivation

Graph-based representation: data are
associated with the vertices of a graph to
capture pairwise relations encoded by the
presence of links

In many systems (biological, brain, social networks,...) the complex interactions among data
cannot be reduced to dyadic relationships

(a) In Gene Regulatory
Networks, some reactions
occur when a set of genes
interact

(b) In Social Networks,
agents can interact in a
group without having
pairwise connetions

(c) In Knowledge Graphs,
higher-order relationship
could provide further insight
and analysis



Topological Deep Learning
Regular Cell Complexes

What topological descriptors
do we need to incorporate higher-order relationships?

Go beyond graphs: Simplicial Complexes, Cell Complexes, Cellular Sheaves, ...

A graph is a cell complex of order 1, containing only cells of order 0 (nodes, in red) and 1
(edges, in blue). Here we consider a cell complex CG of order 2 as a graph augmented with
order 2 cells (polygons, in various colors) being some of its induced cycles.
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The Differentiable Cell Complex Module (DCM) is a function that first learns a graph
describing the pairwise interactions among data points

Then, it leverages the graph as the skeleton of a regular cell complex describing multi-way
interactions among data points

The inferred topology, i.e. the inferred edges and polygons, is then used in two
message-passing networks at node and edge levels to solve the downstream task

The whole architecture is trained in an end-to-end fashion
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Both edge and polygon sampling is realized through the α-entmax class of functions

In this way, we obtain flexible, non-regular, and sparse topologies



Homophilic Numerical Results

Table: Homophilic-graph node classification (Test acc. in % avg.ed over 10 splits).

Cora CiteSeer PubMed Physics CS
Model/Hom. level 0.81 0.74 0.80 0.93 0.80

w
/o

gr
ap

h

MLP 58.92 ± 3.28 59.48 ± 2.14 85.75 ± 1.02 94.91 ± 0.28 87.80 ± 1.54
KCM 78.47 ± 2.09 75.20 ± 2.41 86.66 ± 0.91 95.61 ± 0.18 95.14 ± 0.32
DGM-E 62.48 ± 3.24 62.47 ± 3.20 83.89 ± 0.70 94.03 ± 0.45 76.05 ± 6.89
DGM-M 70.85 ± 4.30 68.86 ± 2.97 87.43 ± 0.40 95.25 ± 0.36 92.22 ± 1.09
DCM 78.80 ± 1.84 76.47 ± 2.45 87.38 ± 0.91 96.45 ± 0.12 95.40 ± 0.40
DCM (α = 1) 78.73 ± 1.99 76.32 ± 2.75 87.47 ± 0.77 96.22 ± 0.27 95.35 ± 0.37

w
gr

ap
h

GCN 83.11 ± 2.29 69.97± 2.00 85.75 ± 1.01 95.51 ± 0.34 87.28 ± 1.54
GCN2 87.85 ± 1.41 78.53 ± 2.66 89.60 ± 0.70 97.41 ± 0.34 95.05 ± 0.38
GAT 89.81 ± 1.77 78.18 ± 2.31 88.53 ± 0.61 98.87 ± 0.30 94.42 ± 0.70
KCM 78.43 ± 2.11 75.23 ± 2.45 86.61 ± 0.95 96.16 ± 0.17 95.46 ± 0.36
CWN 88.63 ± 1.91 75.53 ± 2.13 87.97 ± 0.77 96.23 ± 0.24 93.52 ± 0.59
GCN+CCCN 86.09 ± 1.82 78.36 ± 3.33 88.59 ± 0.67 96.90 ± 0.30 95.31 ± 0.49
DGM-E 82.11 ± 4.24 72.35 ± 1.92 87.69 ± 0.67 95.96 ± 0.40 87.17 ± 3.82
DGM-M 86.63 ± 3.25 75.42 ± 2.39 87.82 ± 0.59 96.21 ± 0.44 92.86 ± 0.96
DCM 85.78 ± 1.71 78.72 ± 2.84 88.49 ± 0.62 96.99 ± 0.44 95.79 ± 0.48
DCM (α = 1) 85.97 ± 1.86 78.60 ± 3.16 88.61 ± 0.69 96.69 ± 0.46 95.78 ± 0.49



Heterophilic Numerical Results

Table: Heterophilic-graph node classification (Test acc. in % avg.ed over 10 splits).

Texas Wisconsin Squirrel Chameleon

Model/Hom. level 0.11 0.21 0.22 0.23

w
/o

gr
ap

h

MLP 77.78 ± 10.24 85.33 ± 4.99 30.44 ± 2.55 40.35 ± 3.37
KCM 84.12 ± 11.37 87.10 ± 5.15 35.15 ± 1.38 52.12 ± 2.02
DGM-E 80.00 ± 8.31 88.00 ± 5.65 34.35 ± 2.34 48.90 ± 3.61
DGM-M 81.67 ± 7.05 89.33 ± 1.89 35.00 ± 2.35 48.90 ± 3.61
DCM 85.71 ± 7.87 87.49 ± 5.94 35.55 ± 2.24 53.63 ± 3.07
DCM (α = 1) 84.96 ± 10.24 86.72 ± 6.02 35.25 ± 2.22 53.67 ± 3.19

w
gr

ap
h

GCN 41.66 ± 11.72 47.20 ± 9.76 24.19 ± 2.56 32.56 ± 3.53
GCN2 75.50 ± 7.81 74.57 ± 5.38 33.09 ± 1.76 49.50 ± 3.02
GAT 66.72 ± 11.22 60.52 ± 9.23 35.07 ± 2.13 50.73 ± 3.12
KCM 83.92 ± 11.15 84.92 ± 5.21 34.47 ± 1.49 53.12 ± 2.02
CWN 65.87 ± 6.33 64.57 ± 7.12 32.44 ± 2.75 43.86 ± 2.51
GCN+CCCN 84.43 ± 9.11 84.03 ± 5.42 OOM OOM
DGM-E 60.56 ± 8.03 70.67 ± 10.49 29.87 ± 2.46 44.19 ± 3.85
DGM-M 62.78 ± 9.31 76.00 ± 3.26 30.44 ± 2.38 45.68 ± 2.66
DCM 84.87 ± 10.04 86.33 ± 5.14 34.95 ± 2.59 53.05 ± 3.00
DCM (α = 1) 84.96 ± 5.60 85.36 ± 5.05 35.13 ± 2.27 53.76 ± 3.72



LTI’s Visualization

Evolution of the latent complex for the Texas dataset. Edges in orange, triangles in
lilac, squares in purple (Kmax = 4). Homophily levels h = [0.11, 0.44, 0.99].
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