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Problem: Forecast Weather

u(x, t) =
u1(x, t)

⋮
uK(x, t)

Temperature

Precipitation

⋮

x ∈ ℝ3, t ∈ ℝ



Physics Governing Differential Equations Discrete Numerics

Source: Bauer et al. The quiet revolution of numerical weather prediction. Nature 2015

How to model weather?
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Numerous ML methods like FourCastNet (NVIDIA), GraphCast (DeepMind), ClimaX 
(Microsoft), etc, forecast weather and have surpassed IFS (conventional physics method). But:
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Rise of machine learning

• Do they produce physically consistent forecasts? 
• Are they compact?
• Do they follow the underlying physics?This work

Previous Methods



Black box methods based on Transformers, UNets, GNNs, etc. overlook the fundamental physical 
dynamics and continuous time nature of weather.   
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Issues with black-box modeling approaches

ut+1 = f(ut)

Physics
Cont. time
Compact

+

Vision Transformer

AR nature



Neural PDEs do not include any physical dynamics, but gives the solution for continuous time.
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Neural PDEs as modeling choice

Physics
Cont. time
Compact

·u(x, t) :=
∂u(x, t)

∂t
= F (x, u, ∇xu, ∇2

xu, …)



7

Contributions
Develop a continuous-time model (neural ODEs/PDEs) that (i) follows the underlying 
physics and (ii) is compact.

Physics
Cont. time
Compact



Weather can be described as a spatial movement of quantities over time. An approach to model the 
movement of a quantity is advection.
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A look at physics: Advection PDE

∂u
∂t

+ v ⋅ ∇u + u∇ ⋅ v = 0
Transport Compression

Time evolution  ·u



How to model weather using 
advection equation?
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🤔 



Weather advection
We model weather as a spatiotemporal process  of  quantities, 

, and assume process follows an advection PDE as,
u(x, t) = (u1(x, t), …, uK(x, t)) K

uk(x, t) ∈ R
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·uk(x, t) State 

Change



Weather advection
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·uk(x, t) = −vk(x, t) ⋅ ∇uk(x, t)

We model weather as a spatiotemporal process  of  quantities, 
, and assume process follows an advection PDE as,

u(x, t) = (u1(x, t), …, uK(x, t)) K
uk(x, t) ∈ R



Weather advection
We model weather as a spatiotemporal process  of  quantities, 

, and assume process follows an advection PDE as,
u(x, t) = (u1(x, t), …, uK(x, t)) K

uk(x, t) ∈ R
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·uk(x, t) = −vk(x, t) ⋅ ∇uk(x, t) − uk(x, t)∇ ⋅ vk(x, t)



Towards Neural Advection
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We model change in the velocity by parametrising it as a function of , 
spatial gradients , current velocity  and spatiotemporal embeddings  

u(t) = {u(x, t) : x ∈ Ω}
∇u v(t) = {v(x, t) : x ∈ Ω} ψ

·vk(x, t) = fθ(u(t), ∇u(t), v(t), ψ)

Stronger currents 
on land

Cyclic currents



Local and global effects
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To capture local and global effects pertaining to weather, we propose a hybrid network as,

fθ(u(t), ∇u(t), v(t), ψ) = fconv(u(t), ∇u(t), v(t), ψ) + γfatt(u(t), ∇u(t), v(t), ψ)



Spatio-temporal embeddings: Incorporate periodicity
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Day and Season

ψ(t) = {sin 2πt, cos 2πt, sin
2πt
365

, cos
2πt
365 }

Location

ψ(x) = [{sin, cos} × {h, w}, sin(h)cos(w), sin(h)sin(w)]

Joint time - location embeddings

ψ(x, t) = [ψ(t), ψ(x), ψ(t) × ψ(x), ψ(c)], ψ(c) = [ψ(h), ψ(w), lsm, oro] .

Latitude

Longitude

Land sea mask

Orography (elevation)
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Weather advection



Can we model sources and get 
predictive uncertainty ?
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Limitation: Due to the closed system assumption, we cannot model value loss/gain and cannot 
quantify uncertainty.

Modeling External Sources and Quantifying Uncertainty



Limitation: Due to the closed system assumption, we cannot model value loss/gain and cannot 
quantify uncertainty.
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Idea: Add a Gaussian emission model   to quantify value loss/gain and model uncertainty. g

uobs
k (x, t) ∼ 𝒩(uk(x, t) + μk(x, t), σ2

k (x, t)), μk(x, t), σk(x, t) = gϕ(u(x, t), ψ) .

u(x, t)

uobs(x, t)

u(x, t) + μ(x, t)

σ(x, t)

Modeling External Sources and Quantifying Uncertainty



Whole Pipeline
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vt = arg min
vt

{ | | ·ut + div(utvt) | |2 + α | |vt | |2
K }

·ut = − div(utvt) gϕ(ut, ψ)Initial 
Velocity

Advection 
ODE

(a) CLimODE

vt

ut+1:T

u:t

Emission 
Model



Training Objective
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1. Solve  forward with neural velocity 
2. Evaluate likelihood
3. Backpropagate wrt 

u(t) vθ(t)

(θ, ϕ)

Optimize the log-likelihood over the observations ,  at 𝒟 = (y1, …, yN) yi ∈ ℝK×H×W (t1, …, tN)

log p(y ∣ θ, ϕ) ∝
N

∑
i=1

log 𝒩 (yi ∣ uθ(ti) + μϕ(ti), diag(σϕ(ti)))

(uT
vT) = (u0

v0) + ∫
T

0 ( −div(utvt)
fθ (ut, ∇ut, vt, ψ)) dt



Experiments
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Results: Data

Data: We consider 5.625° resolution dataset from WeatherBench (regridded original ERA5) 
and chose following key meteorological variables.
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Results: Global Forecasting

Global Forecasting: RMSE and ACC comparisons with baselines. We only consider these 5 quantities.
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Results: Predictions
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Global Uncertainty Maps Error = uobs − upredODE predictions + biasODE predictions



Results: CRP Scores

CRPS: ClimODE achieves lower scores demonstrating efficacy in prediction.
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Continuous Ranked Probabilistic Scores (CRPS) is a measure of how good forecasts are in 
matching observed outcomes. 

CRPS = 0 : Wholly Accurate
CRPS = 1 : Wholly Inaccurate



Climate Forecasting: Monthly Average Value Forecasting
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Climate Forecasting: Monthly average value forecasting.

Forecast average weather conditions over one-month duration.



Ablation: Effect of individual components

Effect of each component: Advection and Emission components improves the best.
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Ablation: Interpretability

Bias: Explains day-night cycle.
Uncertainty: Uncertainty highest on land and in north 
according to day-night cycle.
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Conclusion

• We have shown an effective method to forecast macro-scale 
weather with advection.

• Establishes a new SOTA, provides interpretation and uncertainty 
quantification. 
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Future Work

• Incorporating geometrical aspect of earth.
• Higher resolution and region specific modeling.
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How does it solve?
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Given initial state  one can obtain forecast as, followsu0

(uT
vT) = (u0

v0) + ∫
T

0 ( −div(utvt)
fθ(ut, vt, ∇ut)) dt



How does it solve?
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Given initial state  one can obtain forecast as, followsu0

Only learn the change

(uT
vT) = (u0

v0) + ∫
T

0 ( −div(utvt)
fθ(ut, vt, ∇ut)) dt



(uT
vT) = (u0

v0) + ∫
T

0 ( −div(utvt)
fθ(ut, vt, ∇ut)) dt

How does it solve?
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Given initial state  one can obtain forecast as, followsu0

Still unknown? How to start the dynamics?



Initial velocity Inference
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We need an initial velocity estimate to start the system, obtain it why minimising the advection 
equation as,

vt = arg min
vt

{ | | ·ut + ∇ ⋅ (utvt) | |2 + α | |vt | |2
K }

where  is temporal derivative approximated via past states   and include a 
smoothness kernel  to obtain spatially smooth velocities. 

·u u(t < t0)
K


