

Less is More: Fewer Interpretable Region via Submodular Subset Selection

Ruoyu Chen

Hua Zhang

Siyuan Liang

Jingzhi Li

Xiaochun Cao

R. Chen's Homepage

WeChat

Interpretable AI

Interpretation can improve human understandability, discover the errors made by the model, even can help revise and improve the model performance, and so on.

Interpretating high-performance deep learning models.

Universal interpretable method, with no need to pay attention to the model architecture itself, can be easily scaled to large models.

This work:

- design a more accurate and universal post-hoc attribution method
- discover what causes the model to make incorrect decisions

Image Attribution

The main objective in attribution techniques is to highlight the discriminating variables for decision-making.

Image Attribution

Based on inner propagation, activation, or gradient

Based on sharpley value estimation

Based on perturbation

Challenge in Attribution

Existing attribution methods <u>inaccurate</u> generate small regions thus misleading the direction of correct attribution.

Input Image I

Attribution Map \mathcal{A}

Incorrect Prediction: Tree Sparrow Ground Truth: Lazuli Bunting

They also can't produce good attribution results for samples with wrong predictions.

Our Solution

Divide the image into a set of small sub-regions and ranking the sub-regions according to their importance.

- Reformulate the attribution problem as a submodular subset selection problem;
- Employ regional search to expand the sub-region set to alleviate the insufficient dense of the attribution region;
- A novel submodular mechanism is constructed to limit the search for regions with wrong class responses.

1. Sub-Region Division

Designed Submodular Function

Confidence Score (Improve credibility):

$$s_{\text{conf.}}(\mathbf{x}) = 1 - \frac{K}{\sum_{k_c}^{K} (e_{k_c} + 1)},$$
 (Eq. 4)

Effectiveness Score (Improve diversity):

$$s_{\text{eff.}}(S) = \sum_{s_i \in S} \lim_{s_j \in S, s_i \neq s_j} \text{dist}\left(F(s_i), F(s_j)\right), \quad (\text{Eq. 6})$$

Consistency Score (Improve semantic consis.):

$$s_{\text{cons.}}(S, \boldsymbol{f}_{s}) = \frac{F(\Sigma_{\mathbf{I}^{M} \in S} \mathbf{I}^{M}) \cdot f_{s}}{\left\| F(\Sigma_{\mathbf{I}^{M} \in S} \mathbf{I}^{M}) \right\| \|f_{s}\|}, \quad (\text{Eq. 7})$$

Collaboration Score (Improve collective effect):

$$s_{\text{colla.}}(S, \mathbf{I}, \boldsymbol{f}_s) = 1 - \frac{F(\mathbf{I} - \sum_{\mathbf{I}^M \in S} \mathbf{I}^M) \cdot \boldsymbol{f}_s}{\|F(\mathbf{I} - \sum_{\mathbf{I}^M \in S} \mathbf{I}^M)\| \|\boldsymbol{f}_s\|}, \quad \text{(Eq. 8)}$$

9

Advanced Attribution Results

Use fewer image region but get higher prediction confidence.

Table 1: Deletion and Insertion AUC scores on the Celeb-A, VGG-Face2, and CUB-200-2011 validation sets.

	Celeb-A		VGGFace2		CUB-200-2011	
Method	Deletion (\downarrow)	Insertion (†)	Deletion (\downarrow)	Insertion (†)	Deletion (\downarrow)	Insertion (†)
Saliency (Simonyan et al., 2014)	0.1453	0.4632	0.1907	0.5612	0.0682	0.6585
Saliency (w/ ours)	0.1254	0.5465	0.1589	0.6287	0.0675	0.6927
Grad-CAM (Selvaraju et al., 2020)	0.2865	0.3721	0.3103	0.4733	0.0810	0.7224
Grad-CAM (w/ ours)	0.1549	0.4927	0.1982	0.5867	0.0726	0.7231
LIME (Ribeiro et al., 2016)	0.1484	0.5246	0.2034	0.6185	0.1070	0.6812
LIME (w/ ours)	0.1366	0.5496	0.1653	0.6314	0.0941	0.6994
Kernel Shap (Lundberg & Lee, 2017)	0.1409	0.5246	0.2119	0.6132	0.1016	0.6763
Kernel Shap (w/ ours)	0.1352	0.5504	0.1669	0.6314	0.0951	0.6920
RISE (Petsiuk et al., 2018)	0.1444	0.5703	0.1375	0.6530	0.0665	0.7193
RISE (w/ ours)	0.1264	0.5719	0.1346	0.6548	0.0630	0.7245
HSIC-Attribution (Novello et al., 2022)	0.1151	0.5692	0.1317	0.6694	0.0647	0.6843
HSIC-Attribution (w/ ours)	0.1054	0.5752	0.1304	0.6705	0.0613	0.7262

Deletion: <u>4.9%</u> improvement

Insertion: <u>2.5%</u> improvement

Debugging Model Prediction Errors

Debugging Model Prediction Errors

Dark regions are the cause of model prediction errors

Debugging Model Prediction Errors

Mathad	Ave	Incortion ([†])			
Method	(0-25%)	(0-50%)	(0-75%)	(0-100%)	Insertion ()
Grad-CAM++ (Chattopadhay et al., 2018)	0.1988	0.2447	0.2544	0.2647	0.1094
Grad-CAM++ (w/ ours)	0.2424	0.3575	0.3934	0.4193	0.1672
Score-CAM (Wang et al., 2020)	0.1896	0.2323	0.2449	0.2510	0.1073
Score-CAM (w/ ours)	0.2491	0.3395	0.3796	0.4082	0.1622
HSIC-Attribution (Novello et al., 2022)	0.1709	0.2091	0.2250	0.2493	0.1446
HSIC-Attribution (w/ ours)	0.2430	0.3519	0.3984	0.4513	0.1772

Table 2: Evaluation of discovering the cause of incorrect predictions.

Average highest confidence: <u>67.3%</u> improvement

Insertion: <u>40.8%</u> improvement

Extensions: division methods

Prior Saliency Map (This paper), Insertion AUC: 0.7236

SLICO, Insertion AUC: 0.7604

Segment Anything, Insertion AUC: 0.6803

Extensions: explaining multimodal foundation model

multimodal model that can generate

joint embeddings across seven

modalities

Percentage of image revealed

Easy to scale to large model.

Summary

• A new perspective on image attribution: submodular subset selection

• A general attribution method for image classification problems that can be easily scaled to large models

Can effectively discover potential regions that cause model's wrong prediction

Thank you so much for listening!

Poster: Hall B #219

Speaker: Ruoyu Chen University of Chinese Academy of Sciences

R. Chen's Homepage

WeChat

Paper

Code