
MetaGPT: Meta Programming For A 
Multi-Agent Collaborative Framework

Sirui Hong∗, Mingchen Zhuge∗, (equal contributions)
Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu†, Jürgen Schmidhuber (email: alexanderwu@deepwisdom.ai )

mailto:alexanderwu@deepwisdom.ai


1. Introduction

What is an agent?

What is the multi-agents?



Hallucinations and Inconsistency,
especially generations with long context.

2. Challenges



3. Standard Operating Procedure (SOP)



Inspired by this, SOP has been implemented in MetaGPT to improve collaboration. 
Each agent, from Product Managers to QA Engineers, plays a specific role, contributing
distinct elements to the project. This approach allows MetaGPT to deconstruct complex
tasks into simpler actions, promoting a smooth and collaborative workflow across all
stages in the development.

4. SOP in MetaGPT



5. Use Case



6. Agent Collaboration in Software Development (a)



Specialization of Roles 

Workflow across Agents 

v React-Style Mechanism

v Role Playing Mechanism
• Each agent in MetaGPT is designed with a specific role and

set of responsibilities, allowing for a division of labor that
mirrors real-world software development teams.

• Each agent follows react-style behaviors. We extend their
observations by providing environment feedback, and they
adhere to the think-act-react procedure.

• Agents collaborate by sharing messages in the same workspace, 
which either directly trigger actions or actively identify an 
upcoming task.

7. Agent Collaboration in Software Development (b)

• Additionally, each agent is initialized with specific context and
skills, such as web search, diagram design, etc.

• Each agent has both independent and shared memory,
enabling them to be efficient and reliable in task completion.



（1）Structured Communication Interfaces （2）Publish-Subscribe Mechanism 

（3）Executable Feedback （4）Iterative Programming

8. Agent Collaboration in Software Development (c)



Pass@1 on the MBPP and HumanEval. 

MetaGPT achieves 85.9% and 87.7% 
in HumanEval and MBPP respectively 

MetaGPT achieves a 28.2% relative 
improvement on HumanEval compared 
to GPT-4. Executable feedback led to a 
4.2% and 5.4% improvement on 
HumanEval and MBPP respectively.

MetaGPT achieves a high executability 
score of 3.75, very close to 4 (flawless).

MetaGPT takes only 503 seconds to 
finish a task on average.

MetaGPT demonstrates high productivity 
in code, which needs only 124.3 tokens 
for one line of code.

9. Experiments (a)



ABLATION STUDY 

The Effectiveness of Roles
ü Adding roles like product manager, architect and project manager

consistently improves executability and reduce the labor of revisions.

The Effectiveness of Executable Feedback Mechanism
ü The executable feedback of MetaGPT leads to a significant improvement 

of 4.2% and 5.4% in Pass @1 on HumanEval and MBPP.

ü The feedback mechanism improves functionality and executability, 
increasing the score from 3.67 to 3.75, while reducing the cost of human 
revisions significantly, from 2.25 to 0.83.

10. Experiments (b)



10. Demos: Architect Design by MetaGPT



11. Demos: Development Procedures in MetaGPT



Demo softwares developed by MetaGPT.

12. Demos: Software generated by MetaGPT



13. Demos: Executions of Generated Software



14. Future Directions

Generate more complex software 
Understand and interpret data
Recursive (self) improvement
Automatic agent orchestration



THANKS!

Sirui Hong∗, Mingchen Zhuge∗, (equal contributions)
Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu†, Jürgen Schmidhuber (email: alexanderwu@deepwisdom.ai )

Poster: Halle B #131

mailto:alexanderwu@deepwisdom.ai

