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Probabilistic Modeling Tasks

* Many real-world problems require diverse high-scoring solutions
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Generative Flow Networks

* Generative Flow Networks (GFlowNets) are attractive models for these problems!

x~ []; P(action;|state;)

- generate with a sequence of actions
represent a rich multimodal distribution

[1] Jain et al., GFlowNets for Al-Driven Scientific Discovery, 2022



Generative Flow Networks

* Generative Flow Networks (GFlowNets) are attractive models for these problems!

x~ [1; P(action;|state;) P(x) « exp(—E€(x))
)
A energy function:
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- generate with a sequence of actions - sample from the Boltzmann distribution
represent a rich multimodal distribution discover diverse high scoring solutions

[1] Jain et al., GFlowNets for Al-Driven Scientific Discovery, 2022



Limitations in Credit Assignment

(better modeling P(x) « exp(—E(x)))
* ourgoal: improving credit assignment for better training of GFlowNets!

I credit assignment HileHaldiavlale
the contribution of the action to the energy
e.g., high probability to the action responsible for the low energy

* motivation: limitations in the credit assignment



Limitations in Credit Assignment

(better modeling P(x) « exp(—E(x)))
* ourgoal: improving credit assignment for better training of GFlowNets!

I credit assignment HileHaldiavlale
the contribution of the action to the energy
e.g., high probability to the action responsible for the low energy

* motivation: limitations in the credit assignment

assign 1_[ P(action;|state;) from exp(—E&(x))
i

assigning multiple probabilities solely relies on the energy;
associating an action with the observed energy is challenging



Key Contri bUtionS E(x) = Z r(action;, state;)

i

* We train GFlowNets with local credits 7 that decompose the energy €

r(action,, state,)

local credits enable partial inference

learning from the evaluation of individual action

“before reaching the terminal state”
r(actionq, state, ) r(actions, state3)

assign 1_[ P(action;|state;) from exp(—E r(action;, state;))
i .
l

specifying the contribution of an action;
better associating an action with the observed energy



Learning Energy Decompositions for

Partial Inference in GFlowNets
(method)



GFlowNet Training

* Given the energy of the terminal state £(st = x), GFlowNets train

a policy Pr that makes a transition (O—Q), sy = S¢41) with an action

state _
action

2
Fo(s¢) PF(St+1|St)>
Fo(s¢+1) Pe(stlst41)
subjectto Fp (s = x) = exp(—E(x))

minimize (log

W .“energy

p P

/

training with transitions s; = s¢+1 and energies of the terminal states

* Fy(s)isthe flow (unnormalized probability) estimation
 Pg(-|-)isabackward policy



Partial Inference in GFlowNets

conventional training partial inference

local credits

* We are interested in incorporating partial inference capabilities...
(@) how to enable partial inference with local credits?

(b) how to evaluate local credits?



Training with Local Credits

* key component (a): incorporating local credits r(s; — s;,4) into the objective
(instead of the terminal energy)

2
Fo(st) Pr(st+1lSt) )
Fo(s¢+1) Pe(s¢lses1)

=> promotes pr(s¢411s:) for highr(s; = styq1)

minimize (r(st — S;41) +log

[1] Pan et al., Better Training of GFlowNets with Local Credit and Incomplete Trajectories, ICML 2023



Training with Local Credits

* key component (a): incorporating local credits r(s; — s;,4) into the objective
(instead of the terminal energy)

Fo(st) Pr(Ses1]se) )2

minimize (T(St = Sty1) +log Fo(st+1) Pg(s¢lsisq)
+ +

still enabling Pr(x) o exp(—E€(x)) when Z?‘(St = Sepq) = E(X) [1]
t

a necessary condition for local credits

[1] Pan et al., Better Training of GFlowNets with Local Credit and Incomplete Trajectories, ICML 2023



How to Evaluate Local Credits?

* prior approach: the heuristic evaluation 7#(s; = s;;1) based on the energy [a]

{ P(s = sepq) = E(sp) — E(Sp41) }

* e.g., heuristic evaluation in molecular generation

| P(st = se41) = E( é“ ) — &( 5ﬁf )

e.g., changes in the molecular property by adding a fragment

[1] Pan et al., Better Training of GFlowNets with Local Credit and Incomplete Trajectories, ICML 2023



Pitfalls of Heuristic Evaluation (50 = Sesn) = E(Sesr) — £

* The heuristic local credits may not be informative

* may noy provide useful hints to enhance credit assignments

a 4 e @ ® g -~ action ‘ X4  gx)=-1

=» adding an item =>» otherwise, zero



Pitfalls of Heuristic Evaluation

* The heuristic local credits may not be informative

may noy provide useful hints to enhance credit assignments

‘ b ‘ state

€(sy) =0

—

@ ® g -~ action

€(s,) =0

—

€(s3) =0

@ x4

—

P(s¢ = St41) = E(Seq1) — E(s)

Ex) =-1

E(sy) =—1




Pitfalls of Heuristic Evaluation (50 = Sesn) = E(Sesr) — £

* The heuristic local credits may not be informative

* may noy provide useful hints to enhance credit assignments

= 99
€(s,) =0 T €(s,) =0 T €(s3) =0 T €(sy) =—1

non-zero local credits &
four identical items

[

27 (St = Se41)

Is the “benefit of repeating the same item” identifiable?



Learning Regularized Local Credits

* key component (b): learning informative local credits

that are reqularized to identify the terminal state energies

- 9
| I I €(sy) = -1
identifying repeating the same item frequently results in non-zero terminal energy
%)
T
= o—
& O

identifying underlying contributions of actions to the energy

>

non-zero
local credits



Learning Energy Decompositions

* We train a local credit network r, to induce informative local credits

e B R ALY
local credits 74 (+)

network T



Learning Energy Decompositions

* We train a local credit network r, to induce informative local credits

e B R ALY
local credits 74 (+)

network T

T-1

2 7”¢(5t = St41) = E(s7)

t=0

* Toreplace the energy (key component (a)),
local credits learn to decompose the energy: [+ + 1 =~ I}




Learning Energy Decompositions

* We train a local credit network r, to induce informative local credits

e B R ALY
local credits 74 (+)

network T

T-1
* Toreplace the energy (key component (a)),
: Z rqb(St = Sep1) = E(s7)
local credits learn to decompose the energy: BN+ + 1 ~ |} £
T-1 2]
minimize,, Z 2 Te (St = St41) —  €(s7)
T t=0

training objective for valid decompositions



Learning Energy Decompositions

* We train a local credit network r, to induce informative local credits

RCal B e B

network T

to be correlated with the terminal energy : ] = [l =l =

* Thelocal credits are reqularized (key component (b)), B
3

T—1
minimize,. s E ? ? E :
t=0

T

"”gb(St > Sty1) —

local credits 74 (+)

Te (St = Sep1) & ]E[

E(st)
T

|

?1E(sT)

incorporating a reqularization in energy decompositions

27




Learning Energy Decompositions

* We train a local credit network r, to induce informative local credits

e B R ALY
local credits 74 (+)

network 7,
* Thelocal credits are reqularized (key component (b)), m £(s7)
. : ~ [E
to be correlated with the terminal energy : [l = [l = [l = 3 (St = Sti1) [ T ]
T—1 2]
. 1 1
MINIMIZEy Z [E;-Bern Ez ZtT¢ (St = St41) — ? E(s7)
T t=0

reqularizing heavily relying on specific local credits

[1] Pan et al., Learning Long-Term Reward Redistribution via Randomized Return Decomposition, ICLR 2022




Overall Algorithm

* We alternatively train the local credit network and the policy:

T-1
1 1
minimizer¢ Z Ez-Bern (E z ZtT¢ (St - St+1) - T E(ST)>
T

2

t=0
. J
Y
local credit network 7y, policy Pg
A
4 \

Fo(st) Pp(Stt1lst) )2

minimizng,Pp,PB <T'¢(St - St+1) T lOg FQ (St+1) PB(St|St+1)



Experiments

* ouralgorithm: Learning Energy Decomposition for GFlowNets (LED-GFN)

* extensively validate LED-GFN on various tasks

metric: the number of discovered modes and the performance of top-100 sampled objects

bag molecule rna sequence set-types
(Shen et al.) (Bengio et al.) (Jain et al.) (Panetal., Zhang et al.)



sub trajectory-based implementations (subTB)

Experiments minimize (SE55 006 = 5c) + 0B FEETIE} )
* ouralgorithm: Learning Energy Decomposition for GFlowNets (LED-GFN)
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LED-GFN outperforms the baselines defined with the heuristic local credits



Experiments

* ouralgorithm: Learning Energy Decomposition for GFlowNets (LED-GFN)
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LED-GFN excels on the generation of molecules RNA sequences



Experiments

* ouralgorithm: Learning Energy Decomposition for GFlowNets (LED-GFN)
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In both tasks, the local credits for baselines are hand-crafted;
but LED-GFN even shows similar performance



Summary

* We propose learning energy decomposition for GFlowNets (LED-GFN)

* asimple and effective approach for improving GFlowNets
* local credits identifying contribution of actions via learning

* informative local credits acting as an important inductive bias



Appendix
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Appendix

Table 1: Time costs (sec) analysis. The LED-
GFN does not incur significant overheads.

Method Time cost

subTB 5.80 (—)
FL-subTB  11.43 (1 5.63)
LED-subTB  6.61 (1 0.81)




