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Lots of Progress in Novel-view Synthesis

Mildenhall et al. NeRF. (ECCV 2020)

Input Images Rendered Views
Requirement:

Cameras



Recovering Cameras is a Pre-requisite for 
3D Computer Vision

Cameras are necessary for:
3D reconstruction, generation, detection, etc.



Transform Project

How are Cameras Typically Represented?

World Coordinates Camera Coordinates Pixel Coordinates

x Rx+ t K(Rx+ t)

R, t K

A camera describes how points in world coordinates project to pixel coordinates

Extrinsics: Intrinsics:



Task: Sparse-view Camera Estimation

Input: Sparse Images (N≤8) Output: Cameras



Structure-from-Motion:
Classical Pipeline for Recovering Cameras

Find point correspondences between images, triangulate them in 3D, 
solve for cameras parameters using Bundle Adjustment

Very challenging for sparse views!



Prior Work for Sparse-view Cameras
Images RelPoseCOLMAP

(w/ SP+SG)
RelPose++PoseDiffusion

Did Not Converge

Schönberger et al. COLMAP. (CVPR 16, ECCV 16); Zhang et al. RelPose. (ECCV 22); 
Wang et al. PoseDiffusion. (ICCV 23); Lin et al. RelPose++. (3DV 24)

Classical Methods
+ Precise
- Lacks Robustness

Learning-based Methods
+ Robust
- Insufficient Precision



Challenge: Global Features are a 
Bottleneck for Precision

Image Encoder Feature NN
(ResNet, 

DINO)
(Regression, 

EBM, Diffusion)

{R, t⃗ } Cannot reason about 
low-level information 
(e.g., correspondences)
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Representing Cameras via Ray Bundle

Ray Bundle Camera
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Grossberg & Nayar. Raxel Imaging Model. (IJCV 2005)



Representing Cameras via Ray Bundle

Directions

Moments

Ray Bundle

C

Solve for Optimal 
Camera Center

KR

Solve for Optimal Rotation

Identity Cam. 
Ray Directions
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• Ray representation is distributed
• Ray representation is generic

Grossberg & Nayar. Raxel Imaging Model. (IJCV 2005)



Camera Estimation via Ray Regression

Images with Associated 
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Camera Estimation via Ray Diffusion
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Backward Diffusion Process Visualization
Input Images

Directions Moments

3D Rays



Backward Diffusion Process Visualization
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Backward Diffusion Process Visualization
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Qualitative Comparison
PoseDiffusion RelPose++

Ray Regression Ray Diffusion



Qualitative Comparison
PoseDiffusion RelPose++

Ray Regression Ray Diffusion



Quantitative Evaluation
Rotation Accuracy (% @ 15°)



Takeaways

• We revisit the classical ray representation of cameras for 
learning-based pose estimation

• Present a diffusion-based model to predict the ray 
representation probabilistically

• Future direction: Train on all camera models jointly 



Thank You for Listening!

Project Page (w/ Paper, Code, & More Results): 
jasonyzhang.com/RayDiffusion

Join us at our poster: Halle B #14


