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Occam’s Razor

Occam’s Razor is the principle that, all else being equal, the
simplest explanation tends to be the right one.

Occam’s Razor ↔ Bayesian Model Selection

Both minimize information/maximize likelihoods BUT are
ambiguous about multiple data points & objectives.

Examples (left: Reddit, right: MacKay (2003))

How many objects are occluded?

Shannon’s Information Content
The information content (or surprisal) of an event x with
probability p(x) is:

H[x] = − log p(x) (1)

Likewise, the entropy of a random variable X is:

H[X ] = Ep(X) [H[X ]] = −Ep(X) [log p(X)] (2)

Minimum Description Length (MDL)/MLE/MAP

The Minimum Description Length (MDL) formalizes
Occam’s razor by selecting the model that minimizes the
sum of the model’s description length (complexity) and the
data’s description length given the model (fit). For a model
ϕ and data (xn)

N
n=1, the MDL criterion is:

H[ϕ] + H[(xn)
N
n=1 | ϕ] (3)

where H[ϕ] is the model’s description length and
H[(xn)

N
n=1 | ϕ] is the data’s description length given the

model. The model with the lowest MDL score is selected.

Multiple vs Individual Points

For multiple samples (given datasets), information-theoretic
quantities for model selection can be computed in different
ways, leading to ambiguity:
• Joint Quantities (e.g., joint marginal cross-entropy, con-
ditional joint marginal information) substitute the dataset
directly, e.g. H[D | ϕ], and include in-context learning.

• Individual Quantities (e.g., marginal cross-entropy, con-
ditional marginal cross-entropy) focus on model perfor-
mance over individual points, e.g., Hp̂data∥ p(· | ϕ)[X ], simi-
lar to validation/test performance.

Different Data Regimes, Model Misspecification and Prior-Data Conflict

TL;DR

1. In the large-data regime (or infinite data limit), the (rate of the) joint quantities and individual quantities converge to the
same values. Different models perform differently due to different levels of model misspecification.

2. In the low-data regime (and low can still be a lot), these quantities will not have converged, and different models can perform
differently due to model misspecification and prior data conflict, which can even be anti-correlated.

Model misspecification occurs when the assumed model class
does not contain the true data-generating process:

•Different models have different levels of misspecification.

• In the infinite data limit, the model with the lowest misspec-
ification (i.e., the closest to the true data-generating process)
will perform best.

Prior-data conflict arises when the assumed prior distribution
is inconsistent with the observed data. In this scenario:

•Models with priors that are more consistent with the observed
data will perform better initially.

•The effect of prior-data conflict diminishes as the dataset size
increases and the likelihood term dominates the prior term.

Different Information Quantities for Model Selection

For a dataset (xn)
N
n=1 = {x1, . . . ,xN}, we consider the following information-theoretic quantities for model selection:

• Joint Marginal Cross-Entropy: Hp̂data∥ p(· | ϕ)[{Xn}Nn=1]. The expected joint information content of a dataset (X1, ...,Xn) under
the model’s joint prior predictive distribution, averaged over the true data distribution. Equivalent to the log marginal likelihood
(LML).

•Conditional Marginal Cross-Entropy: Hp̂data∥ p(· | ϕ)[Xn |Xn−1, . . . ,X1]. The expected information content of a single data point
Xn conditioned on the previous data points (Xn−1, . . . ,X1) under the model’s predictive distribution, averaged over the true data
distribution. Equivalent to leave-one-out cross-validation.

•Conditional Joint Marginal Information: H[{xn}Nn=N−k+1 | {xn}N−k
n=1 ,ϕ]. The joint information content of a dataset

{xn}Nn=N−k+1 conditioned on a previous dataset {xn}N−k
n=1 under the model’s joint predictive distribution. This is data-order

dependent. Also known as the (negative) conditional log marginal likelihood (CLML) (Lotfi et al., 2022, main paper).

•Conditional Joint Marginal Cross-Entropy: Hp̂data∥ p(· | ϕ)[{Xn}Nn=N−k+1 | {Xn}N−k
n=1 ]. The expected joint information content

of a dataset {Xn}Nn=N−k+1 conditioned on a previous dataset {Xn}N−k
n=1 under the model’s joint predictive distribution, averaged

over the true data distribution. Measures the model’s online learning (or in-context learning) performance. Also known as the
(negative) conditional log marginal likelihood (CLML) (Lotfi et al., 2022, appendix).

Failures & Prior Art

With anti-correlated prior-data conflict and model misspec-
ification, existing methods fail: Training speed methods
(TSE, TSE-E, TSE-EMA) (Lyle et al., 2020; Ru et al.,
2021) and the conditional log marginal likelihood (CLML)
(Fong and Holmes, 2020; Lotfi et al., 2022) essentially ap-
proximate the generalization loss by averaging under the
loss curve might and might prefer models that generalize
worse in the low-data regime when the (partial) area un-
der the curve does not reflect the generalization performance.

The different metrics from
prior art can fail when
model misspecification and
prior-data conflict are anti-
correlated. Here, for a sim-
ple binary regression task:
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