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Data Processing Inequalities

TL;DR

Informally, the Data Processing Inequality (DPI) states that processing data stochastically can only reduce information.
Formally, for distributions q(Θ) and p(Θ) over a random variable Θ and a stochastic mapping Y = f(Θ), the DPI is expressed
as:

DKL(q(Θ) ∥ p(Θ)) ≥ DKL(q(Y ) ∥ p(Y ))

Equality holds when DKL(q(Θ | Y ) ∥ p(Θ | Y )) = 0.

The data processing inequality states that if two
random variables are transformed in this way, they
cannot become easier to tell apart.

“Understanding Variational Inference in Function-Space”,
Burt et al. (2021)

Example: Image Processing

Consider an image processing pipeline where X is the original
image, Y is a compressed version, and Z is Y after adding blur
and pixelation. The DPI tells us that I[X ;Y ] ≥ I[X ;Z], as
each processing step results in information loss.

Jenson-Shannon Divergence DPI

The Jensen-Shannon divergence (JSD) makes the KL diver-
gence symmetric. For:

f(x) =
p(x) + q(x)

2

DJSD(p(x) ∥ q(x)) =
1

2
DKL(p(x) ∥ f(x)) +

1

2
DKL(q(x) ∥ f(x)).

The square root of the Jensen-Shannon divergence, the Jensen-
Shannon distance, is symmetric, satisfies the triangle inequal-
ity and hence a metric.
For p(x) and q(x) and shared transition function f(y |x) for the
model X → Y :

DJSD(p(X) ∥ q(X)) ≥ DJSD(p(Y ) ∥ q(Y )).

Mutual Information DPI
For any Markov chain Z → X → Y with f(z, x, y) =
f(z)f(x | z)f(y | x) for any distribution f(z):

I[X ;Z] = DKL(f(X | Z) ∥ f(X))

= Ef(z) [DKL(f(X | z) ∥ f(X))]
(1)

≥ Ef(z) [DKL(f(Y | z) ∥ f(Y ))]

= DKL(f(Y | Z) ∥ f(Y ))

= I[Y ;Z],

where (1) follows from the KL DPI.

Chain Rule of the Divergence

An important property of the KL divergence is the chain rule:

DKL(q(Yn, ...) ∥ p(Yn, ...))

=

n∑
i=1

DKL(q(Yi | Yi−1, ...) ∥ p(Yi | Yi−1, ...)).

This chain rule also yields a chain inequality:

DKL(q(Yn, ...) ∥ p(Yn, ...)) ≥ DKL(q(Yn−1, ...) ∥ p(Yn−1, ...))

...

≥ DKL(q(Y1) ∥ p(Y1)),

where we start from the KL DPI and then use the chain rule.

Proof of the DPI
Using the chain rule of the KL divergence twice:

DKL(p(X) ∥ q(X)) + DKL(p(Y |X) ∥ q(Y |X))︸ ︷︷ ︸
=DKL(f(Y |X) ∥ f(Y |X))=0

= DKL(p(X, Y ) ∥ q(X, Y ))

= DKL(p(Y ) ∥ q(Y )) + DKL(p(X | Y ) ∥ q(X | Y ))︸ ︷︷ ︸
≥0

≥ DKL(p(Y ) ∥ q(Y )).

We have equality exactly when p(x | y) = q(x | y) for (almost)
all x, y.

More Info More References

[1] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[2] Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable function-space
variational inference in bayesian neural networks. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Sys-
tems, 2022.

Function-Space Variational Inference
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Function-space variational inference (FSVI) is a principled approach to Bayesian inference that respects the inherent sym-
metries and equivalences in overparameterized models. It focuses on approximating the meaningful posterior p([θ] | D) while
avoiding the complexities of explicitly constructing and working with equivalence classes. The FSVI-ELBO regularizes towards a
data prior:

Eq(θ) [− log p(D | θ)] + DKL(q(Y... | x...) ∥ p(Y... | x...)),
unlike in regular variational inference, where we regularize towards a parameter prior DKL(q(Θ) ∥ p(Θ)).

(Regular) Variational Inference & ELBO

We approximate the Bayesian posterior p(θ | D) with a varia-
tional distribution q(θ) by minimizing DKL(q(Θ) ∥ p(Θ | D))
and dropping constant (intractable) terms to obtain a simpli-
fied objective, which also yields an information-theoretic upper
bound on the information content − log p(D) of the data D:

0 ≤ DKL(q(Θ) ∥ p(Θ | D))

= DKL(q(Θ) ∥ p(D |Θ) p(Θ)

p(D)
)

= Eq [− log p(D |Θ)] + DKL(q(Θ) ∥ p(Θ))︸ ︷︷ ︸
Evidence Bound (Simplified Objective)

− ( − log p(D)︸ ︷︷ ︸
(neg. log) Evidence

)

The negative of this bound is called the evidence lower bound
(ELBO).

Parameter Symmetries

Deep neural networks have many parameter symmetries: for ex-
ample, in a convolutional neural network, we could swap chan-
nels without changing the predictions. =⇒ We are not in-
terested in these symmetries, but in the predictions.

Equivalence Classes

We can use equivalence classes to group together parameters
that lead to the same predictions on a (test) set of data:

[θ] ≜ {θ′ : f(x;θ) = f(x;θ) ∀x}.
Crucially, different domains for x will induce different equiv-
alence classes.

Consistency of Equivalence Classes with Bayesian Inference

Any distribution over the parameters p(θ) induces a distribu-
tion p̂([θ]) over the equivalence classes:

p̂([θ]) ≜
∑
θ′∈[θ]

p(θ′).

[θ] commutes with Bayesian inference:

p̂([θ] | D) =
∑
θ′∈[θ]

p(θ′ | D) ⇔ [Θ | D] = [Θ] | D.

This commutative property is a general characteristic of apply-
ing functions to random variables.

Θ Θ | D

[Θ] [Θ] | D

· | D

[·] [·]
· | D

Equality in the Infinite Data Limit

Using the DPI:

DKL(q(Θ) ∥ p(Θ)) ≥ DKL(q([Θ]) ∥ p([Θ]))

≥ DKL(q(Y... | x...) ∥ p(Y... | x...)).
Unless there are no parameter symmetries, the first inequal-
ity will not be tight. For the second inequality to be tight,
we need DKL(q([Θ] | Yn,xn, ...) ∥ p([Θ] | Yn,xn, ...)) → 0 for
n → ∞, which converges as it is monotonically increasing and
bounded by DKL(q([Θ]) ∥ p([Θ])) from above, and thanks of
Berstein von Mises’ theorem we have:

DKL(q([Θ]) ∥ p([Θ])) =

= sup
n∈N

DKL(q(Yn, ... | xn, ...) ∥ p(Yn, ... | xn, ...)).

Bernstein von Mises’ Theorem
BvM states that a posterior distribution converges to the max-
imum likelihood estimate (MLE) as the number of data points
tends to infinity as long as the model parameters are iden-
tifiable, that is the true parameters we want to learn are
unique, and that they have support, which is true for [Θ].

Function-Space Variational Inference & ELBO

FSVI’s ELBO is just the regular ELBO but for [Θ] and ap-
proximations via chain rule of the DPI :

H[D] ≤ H[D] + DKL(q([Θ]) ∥ p([Θ] | D))

= H[D] + DKL(q([Θ]) ∥ p(D | [Θ]) p([Θ])

p(D)
)

= Eq([θ]) [− log p(D | [θ])] + DKL(q([Θ]) ∥ p([Θ])).

Then, we can apply the chain rule together with BvM:

= Eq(θ) [− log p(D | θ)]
+ sup

n
DKL(q(Yn... | xn...) ∥ p(Yn... | xn...))

≥ Eq(θ) [− log p(D | θ)]
+ DKL(q(Yn... | xn...) ∥ p(Yn... | xn...)) ∀n.


