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Data Processing Inequalities

TL;:DR

[nformally, the Data Processing Inequality (DPI) states that processing data stochastically can only reduce information.
Formally, for distributions q(®) and p(®) over a random variable ® and a stochastic mapping Y = (@), the DPI is expressed
as:

Dkr(a(©) || p(®)) = Diw(a(Y) || p(Y))
Equality holds when Dy (q(® | Y) || p(® | Y)) = 0.

The data processing inequality states that if two

random variables are transformed in this way, they | Consider an image processing pipeline where X is the original
cannot become easier to tell apart. image, Y is a compressed version, and Z is Y after adding blur

“Understanding Variational Inference in Function-Space”, || and pixelation. The DPI tells us that [|X;Y] > [[X; Z], as
Burt et al. (2021) || each processing step results in information loss.
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Jenson-Shannon Divergence DPI

The Jensen-Shannon divergence (JSD) makes the KL diver- || An important property of the KL divergence is the chain rule:

gence symmetric. For: Dir(q(Y, .. Y, ..
. o(@) + o2 (qg ) | p(¥n, ...))
| 2 | = Z Dr(q(Yi | Yie1, ...) | p(Y3 | Yiog, -.))-
Disn(p(z) || a(@)) = 5 Dx(p(2) || (z)) + 5 Drila(@) || (). =

This chain rule also yields a chain inequality:

Function-Space Variational Inference

TL;:DR

Function-space variational inference (FSVI) is a principled approach to Bayesian inference that respects the inherent sym-
metries and equivalences in overparameterized models. It focuses on approximating the meaningful posterior p(|@] | D) while
avolding the complexities of explicitly constructing and working with equivalence classes. The FSVI-ELBO regularizes towards a

data prior:

Eq(9> [— log p(D ‘ 9)] + DKL(q(Y... | 213) H p(Y ‘ (IZ)),

unlike in regular variational inference, where we regularize towards a parameter prior Dgp,(q(®) || p(©)).

The square root of the Jensen-Shannon divergence, the Jensen-
Shannon distance, is symmetric, satisfies the triangle inequal-
ity and hence a metric.

For p(x) and q(x) and shared transition function f(y | x) for the > Diw(a(Y1) || p(Y1)),

model X — Y': where we start from the KL DPI and then use the chain rule.

Djysp(p(X) || (X)) > Dysp(p(Y) || q(Y)). Proof of the # DPI
Mutual Information DPI Using the chain rule of the KL divergence twice:

Din(q(Ya, o) [ DYy ) > Dier(@(Yiots o) || p(Yits -2

(Regular) Variational Inference & ELBO

We approximate the Bayesian posterior p(@ | D) with a varia-
tional distribution (@) by minimizing Dxi,(q(®) || p(® | D))
and dropping constant (intractable) terms to obtain a simpli-
fied objective, which also yields an information-theoretic upper
bound on the information content — log p(D) of the data D:

0 < Dkr.(a(®) | 1(9(@’ | 7;))( )
B p(D|O)p(O
= E, [~ logp(D | ©)] + Dx(q(©) || p(©))
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Evidence Bound (Simplified Objective)

—( —logp(D) )
N ——’
(neg. log) Evidence

The negative of this bound is called the evidence lower bound
(ELBO).

Parameter Symmetries

Deep neural networks have many parameter symmetries: for ex-
ample, in a convolutional neural network, we could swap chan-
nels without changing the predictions. = We are not in-
terested in these symmetries, but in the predictions.

For any Markov chain 72 — X — Y with f(z,2,y) = Dir,(p(X) || a(X)) + Dxr(p(Y | X) || (Y | X))
f(2)f(z | 2)f(y | ) for any distribution f(z): m
[[X; Z] = D (H(X | Z2) || #(X)) = Di(p(X,Y) | a(X, Y))
= By D (H(X | 2) || £X)) — D (p(Y) [ a(Y) + D (p(X | ¥) | a(X | )
> By [Drn(f(Y | 2) | £(Y))] )
= R0 DaliCl | L > Dia(p(Y) [ a(Y)
el We have equality exactly when p(z | y) = q(x | y) for (almost)
where (1) follows from the KL, DPI. 2 nY
_
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Equivalence Classes

We can use equivalence classes to group together parameters
that lead to the same predictions on a (test) set of data:

0] = {0 : f(x;0) =1f(x;0) Vaz}.

Crucially, different domains for  will induce different equiv-
alence classes.

Consistency of Equivalence Classes with Bayesian Inference

Any distribution over the parameters p(@) induces a distribu-
tion p(|@]) over the equivalence classes:

p(([6]) = > p(#).
0'c|0]

0| commutes with Bayesian inference:

p([6]| D)= > p(6'|D) = [©]D]=[O] D
0'c|O]

This commutative property is a general characteristic of apply-
ing tunctions to random variables.
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Equality in the Infinite Data Limit

Using the DPI:

Dkr(a(®) || p(®)) = Diw(a(([®]) || p([©]))

Unless there are no parameter symmetries, the first inequal-
ity will not be tight. For the second inequality to be tight,
we need Dk (q(|®] | Y, xp, ...) || p(1O] | Y, ®p, ...)) — 0 for
n — 00, which converges as it is monotonically increasing and

bounded by Dk, (q(|®]) || p(|®])) from above, and thanks of

Berstein von Mises’ theorem we have:

Drr(a([®]) || p(18])) =
= sup Dxp(q(Yo, o | @y o) || D(Yary o | s ).

neN

Bernstein von Mises” Theorem
BvM states that a posterior distribution converges to the max-

imum likelihood estimate (MLE) as the number of data points
tends to infinity as long as the model parameters are iden-
tifiable, that is the true parameters we want to learn are
unique, and that they have support, which is true for |@].

Function-Space Variational Inference & ELBO

FSVI’s ELBO 1is just the reqular ELBO but for |®] and ap-
proximations via chain rule of the DPI:

H[D] < H[D] + Dxr(a([©])) | p(©] | D))

p(D | [©]) p([©])
~ H(D) + Draa(l@) | X2

= Eqo)) [—1log p(D | [0])] + Dxr(a([®]) || p([®]))-
Then, we can apply the chain rule together with BvM:

= Eqg) |~ logp(D | 0)]

51D D (Vi | @) | DY | 21)
> Eq) [~ logp(D | )]

Dy (Yo | @) | DY | ) Vi,
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