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I. Introduction

In this blogpost, we present a ‘ground up’ view of Diffusion Models, start-
ing from its core element (i.e. the ‘score’), building up to the modern form.
While other models use a direct parametric function (with parameters 𝜃)
to transform noise into data distribution 𝑞data(𝑥), i.e. 𝑥 = 𝑓𝜃(𝑧),  where 𝑧 ∼
𝒩(0, 𝐼), diffusion model do so iteratively that involves a parametric “per-
iteration” function (estimate of the true ‘score’)

𝑥 = 𝑔1(𝑔2(𝑔3(…𝑧…, 𝑠𝜃), 𝑠𝜃), 𝑠𝜃),  where 𝑧 ∼ 𝒩(0, 𝐼). (1)
The ‘Score’ of a distribution:

The ‘score’ of a distribution 𝑞data(𝑥) is simply the gradient of the log-density,
i.e. ∇𝑥 log 𝑞data(𝑥). This term was originally coined [1] long back in 1935 by
Ronald Fisher in a slightly different context. But in machine learning, it is
interpreted as a guide to go uphill in the log-density surface. An infinitesimal
step in the direction of the score can get us to a state of higher likelihood

𝑥′
𝑡 = 𝑥𝑡 + 𝛿 ⋅ ∇𝑥 log 𝑞data(𝑥) (2)

II. Generative Modelling with Score function

One can craft an iterative “sampling rule” solely based on the intutive inter-
pretation of score provided in Equation 2

𝑑𝑥 = ∇𝑥 log 𝑞data(𝑥) ⋅ 𝑑𝑡 (3)

However, this process is NOT guarenteed to converge to the true distribution
𝑞data(𝑥). Turns out that this problem has been studied [2] in particle physics
long ago by Paul Langevin, in order to explain movement of particles sus-
pended in fluid. Accoding to their theory, adding a little noise term fixes it.

𝑑𝑥 = ∇𝑥 log 𝑞data(𝑥) ⋅ 𝑑𝑡 +
√

2 ⋅ 𝑑𝐵𝑡,  where 𝑑𝐵𝑡 = 𝒩(0, 𝑑𝑡) (4)

Fokker-Planck Equation & a probability path:

The process in Equation 4 has a guarantee of convergence as 𝑡 → ∞. This
can be validated by first noting 𝜇𝑡(𝑥) = ∇𝑥 log 𝑞data(𝑥), 𝜎𝑡(𝑥) =

√
2 and us-

ing the Fokker-Planck equation where we set 𝑝∞(𝑥) ≔ 𝑞data(𝑥)
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The forward process & ‘schedule’:

It was argued [3] that learning an estimate of the true score everywhere on
the data space 𝑥 is extremely hard. The most popular solution to this problem
is to learn a score specialized for 𝑡. To do so, one need samples from 𝑝𝑡(𝑥).
The “forward process” is thus designed as an ahead-of-time description of
the “path” taken by 𝑝𝑡(𝑥) on the probability space (refer to the above figure).
One can revert the path by using the same Langevin Equation 4 but with end
target being 𝒩(0, 𝐼) and starting from 𝑞data(𝑥)

𝑑𝑥 = ∇𝑥 log 𝒩(0, 𝐼) ⋅ 𝑑𝑡 +
√

2 ⋅ 𝑑𝐵𝑡 = −𝑥 ⋅ 𝑑𝑡 +
√

2 ⋅ 𝑑𝐵𝑡 (6)
To see its similarity to the ‘modern’ form of forward process, one must rede-
fine the interpretation of time to contain it within a finite interval (e.g.[0, 1]).
This is required due to the fact that langevin equation only guarantees con-
vergence with 𝑡 → ∞. One can do so by first discretizing the above equation
and plugging a new time mapping 𝑡′ = 𝒯(𝑡) = 1 − exp(−𝑡)

𝑥𝑡′+𝑑𝑡′ = (1 − 𝑒𝑡𝑑𝑡′)𝑥𝑡 +
√

2𝑒𝑡𝑑𝐵𝑡 (7)
This resembles DDPM’s [4] forward process where 𝑒𝑡𝑑𝑡′ is analogous to 𝛽𝑡

in DDPM (small and increating in time 𝑡). We can then sample 𝑥𝑡 for any 𝑡
by simulating Equation 7.

𝑥𝑡 ∼ 𝑞𝑡(𝑥) (8)
Now the score of a 𝑡-specialized density, i.e ∇𝑥 log 𝑞𝑡(𝑥) must be learned.

III. Estimating the Score function

The previous section deals with the generative modelling problem – given
that we have access to the true score ∇𝑥 log 𝑞data(𝑥), which in reality, we
don’t. The very first credible solution to the score learning was proposed by
[5], which turns the original Score Matching objective (not computable)

𝐽(𝜃) =
1
2
𝔼𝑥∼𝑞data(𝑥)[‖ 𝑠𝜃(𝑥) − ∇𝑥 log 𝑞data(𝑥) ‖2] (9)

.. to a practically computable version named “Implicit Score Matching
(ISM)” which does not require the true score (unavailable)

𝐽𝐼(𝜃) = 𝔼𝑥∼𝑞data(𝑥)[
1
2

‖ 𝑠𝜃(𝑥) ‖2 + 𝚃𝚛(∇𝑥𝑠𝜃(𝑥))]. (10)

This objective was further upgraded by Vincent Pascal [6] as the “Denoising
Score Matching”, the variant still used in modern Diffusion Models

𝐽𝐷(𝜃) = 𝔼𝑥∼𝑞data(𝑥),𝜖∼𝒩(0,𝐼)
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A slight modification (reparameterization) of the denoising score matching
loss above leads to the widely used variant called “noise estimation” where
instead of score, we learn the noise direction from a noisy sample

𝐽𝜖(𝜃) = 𝔼𝑥∼𝑞data(𝑥),𝜖∼𝒩(0,𝐼)[
1

2𝜎2 ‖ 𝜖𝜃( ̃𝑥) − 𝜖 ‖2] (12)

Yet another variant, named as “end point estimation” can be derived easily
from the above equation, which predicts the clean sample from noisy one

𝐽𝑥(𝜃) = 𝔼𝑥∼𝑞data(𝑥),𝜖∼𝒩(0,𝐼)[
1

2𝜎4 ‖ 𝑥𝜃( ̃𝑥) − 𝑥 ‖2] (13)

Connection to Tweedie’s formula:

Equation 13 above has an interesting interpretation – as long as the noise is
gaussian, it can be seen as learning posterior mean of clean quantity from
noisy samples. In bayesian “inverse problem” literature, this is known as
Tweedie’s formula [7]

𝔼𝑥∼𝑞(𝑥 | �̃�)[𝑥] = ̃𝑥 + 𝜎2∇�̃� log 𝑝( ̃𝑥). (14)
The similarity is obvious when we observe the fact that 𝑥𝜃( ̃𝑥) = ̃𝑥 + 𝜎2𝑠𝜃( ̃𝑥).
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