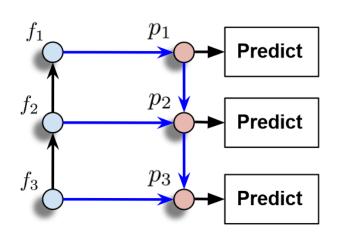
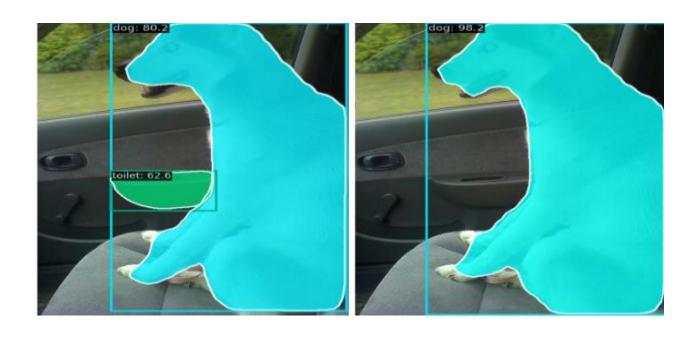




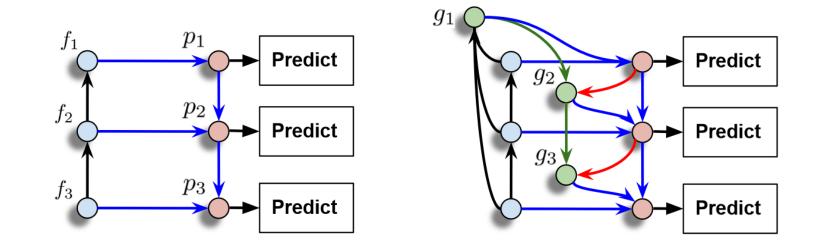
# CMFPN: Context Modeling Meets Feature Pyramid Network

Faroq AL-Tam, Muhammed AL-Qurishi, Thariq Khalid, Riad Souissi ELM Company, Riyadh


8<sup>th</sup> of May 2024


ICLR - Vienna

### Content


- Motivation
- CMFPN
  - FPN to CMFPN
  - Formulation
- Results
- Conclusion and forward
- Questions

## Motivation





### **FPN to CMFPN**



$$p_k = \begin{cases} V_k(W_k f_k) & \text{if } k = 1, \\ V_k(W_k f_k + p_{k-1}) & \text{otherwise,} \end{cases}$$
 (1)

$$p_{k} = \begin{cases} V_{k} (W_{k} f_{k} + g_{k}) & \text{if } k = 1, \\ V_{k} (W_{k} f_{k} + g_{k} + p_{k-1}) & \text{otherwise,} \end{cases}$$
 (2)

#### **CMFPN** latent map:

$$p_{k} = \begin{cases} V_{k} (W_{k} f_{k} + g_{k}) & \text{if } k = 1, \\ V_{k} (W_{k} f_{k} + g_{k} + p_{k-1}) & \text{otherwise,} \end{cases}$$
 (2)

#### **Calibrated backbone feature maps:**

$$\tilde{f}_k = \operatorname{Scale}_{2(\bar{k}-k)}(\operatorname{SE}(f_k)), \quad k = 1, \dots, K,$$
(3)

#### Context:

$$g_k = \begin{cases} V_k^g \operatorname{Concat}_{C_{\mathcal{P}}}(\tilde{\mathcal{F}}) & \text{if } k = 1, \\ V_k^g \left( W_k \tilde{f}_{k-1} + \operatorname{CCM}(g_{k-1}, p_{k-1}) + g_{k-1} \right) & \text{otherwise,} \end{cases}$$
(4)

#### **Context meets latent maps:**

$$CCM(g_k, p_k) = V_k^{CM}CM(Concat_{C_p}(g_k, Scale_{2(\bar{k}-k)}(p_k))),$$
(5)

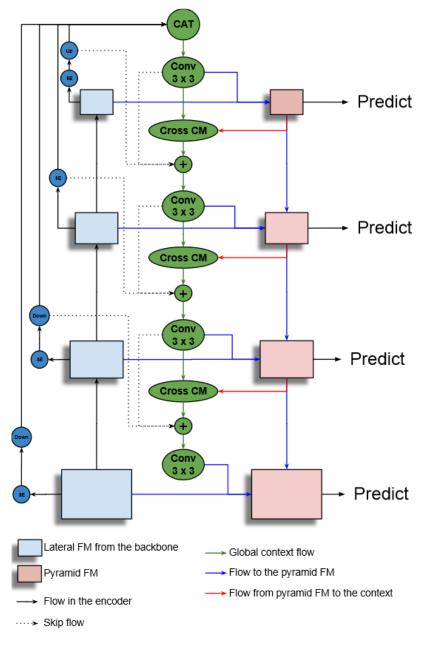
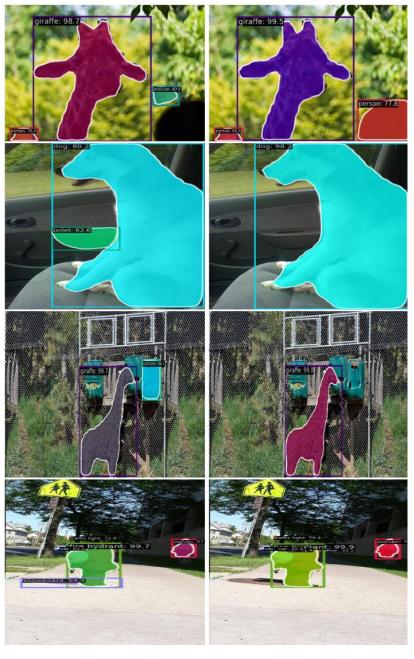




Figure 3: CMFPN



FPN CMFPN

## Results (OD)

| Model              | Backbone                        | AP               | $AP_{50}$ | $AP_{75}$ | $AP_S$ | $AP_{M}$ | $AP_L$ |
|--------------------|---------------------------------|------------------|-----------|-----------|--------|----------|--------|
| Faster R-CNN       | R-50 + FPN                      | 36.90            | 58.40     | 39.70     | 21.70  | 40.50    | 48.10  |
| Faster R-CNN       | R-50 + CFPN Xie et al. (2023)   | 37.20            | -         | -         | 21.70  | 41.40    | 48.60  |
| YOLOF              | R-50 Chen et al. (2021)         | 37.70            | 56.90     | 40.60     | 19.10  | 42.5     | 53.20  |
| Faster R-CNN       | R-50 + CMFPN                    | $39.00_{(+2.1)}$ | 60.50     | 42.30     | 22.90  | 42.20    | 51.60  |
| Mask R-CNN         | R-50 + FPN                      | 37.40            | 58.50     | 40.10     | 21.70  | 40.70    | 48.60  |
| Mask R-CNN         | R-50 + CMFPN                    | $39.60_{(+2.2)}$ | 60.90     | 42.90     | 23.80  | 43.00    | 52.40  |
| Cascade Mask R-CNN | R-50 + FPN                      | 40.70            | 59.10     | 44.30     | 22.50  | 44.30    | 54.00  |
| Cascade Mask R-CNN | R-50 + CFPN   Xie et al. (2023) | 41.50            | -         | -         | 24.10  | 45.70    | 54.00  |
| Cascade Mask R-CNN | R-50 + CMFPN                    | $42.90_{(+2.2)}$ | 62.00     | 46.40     | 25.40  | 46.60    | 57.10  |
| Mask R-CNN         | Swin-T + FPN                    | 42.40            | 65.10     | 46.10     | 25.80  | 45.60    | 56.10  |
| Mask R-CNN         | Swin-T + CMFPN                  | $45.10_{(+2.7)}$ | 67.00     | 48.90     | 27.30  | 48.80    | 60.40  |

## Results (IS)

| Model              | Backbone       | $AP^{Seg}$       | $\mathrm{AP}^{\mathrm{Seg}}_{50}$ | $\mathrm{AP^{Seg}_{75}}$ | $\mathrm{AP}^{\mathrm{Seg}}_{\mathrm{S}}$ | $\mathrm{AP}^{\mathrm{Seg}}_{\mathrm{M}}$ | $\mathrm{AP}^{\mathrm{Seg}}_{\mathrm{L}}$ |
|--------------------|----------------|------------------|-----------------------------------|--------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Mask R-CNN         | R-50 + FPN     | 33.90            | 55.10                             | 36.00                    | 16.00                                     | 36.50                                     | 49.80                                     |
| Mask R-CNN         | R-50 + CMFPN   | $35.60_{(+1.7)}$ | 57.50                             | 37.70                    | 17.50                                     | 38.20                                     | 51.90                                     |
| Cascade Mask R-CNN | R-50 + FPN     | 35.30            | 56.00                             | 37.80                    | 16.20                                     | 38.00                                     | 51.80                                     |
| Cascade Mask R-CNN | R-50 + CMFPN   | $37.10_{(+1.8)}$ | 58.50                             | 39.70                    | 18.40                                     | 39.80                                     | 54.30                                     |
| Mask R-CNN         | Swin-T + FPN   | 39.10            | 62.10                             | 42.10                    | 19.60                                     | 41.80                                     | 57.50                                     |
| Mask R-CNN         | Swin-T + CMFPN | $40.70_{(+1.6)}$ | 64.20                             | 43.70                    | 21.00                                     | 43.80                                     | 60.00                                     |

Table 2: The instance segmentation results on the coco val 2017.

### Conclusions

- FPN fuses multiscale features but it brings suboptimal context to the detection heads.
- CMFPN resolves these issues by modeling the context separately.
- Results show consistent performance on different backbones and object sizes.
- CMFPN will be extended by novel context-aware selective attention.

# Thank you

faroq.al.tam@gmail.com