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Push-forward Generation as Statistical Simulation
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123 fiei

G D MWW~ Loan/Lwean/LLSGAN

e Statistical simulation often deals with the problem of generating samples
from a target probability distribution given random noise.

e For example, the inverse transform sampling generates F'y ' (u)=,4X, given
u ~ U(0,1), where Fiy,'! :=the generalized inverse of the cdf of X.

[ Generative Adversarial Networks (GAN) do something similar. ]




Theoretical Motivation

e GANs aim to produce pseudo-random replicates from an unknown target
distribution F' (- ), often assumed to possess corresponding density fx : X — R

e The task boils down to the search for the best estimate of [x amongst the class
of generated laws gy(-),0 € O.

/o GANs tend to perform well when the target distribution is reqular or has \

intrinsic ‘patterns’.
GANSs excel at estimating Besov densities (Liang, 2021)

e Forimages, estimating some of the responsible semantic features in

K representations accurately results in perceptually acceptable simulations/

Tengyuan Liang. How well generative adversarial networks learn distributions. JMLR, 2021.




Questions

e It seems natural to ask whether there exists a lower limit to the amount of
semantic information a target law needs to possess to be estimated accurately
by GANS.

Theoretical guarantees (due to Brenier, Caffarelli, Figalli etc.) only show a
handful of possibilities of feasible transport maps.

e We check GANSs’ ability to perform elementary simulation tasks based on
distributions characterized by a small set of parameters.

[ When seen from a model selection viewpoint, the answer seems straightforward. J




Experiment: [/ (0, 1)

e Box-Muller transform provides a deterministic

2 ;
pathway, based on radial maps s
1 : \
Can 2-deep vanilla GANs (also, WGAN or Of /i
LSGAN) equipped with ReLU, leaky-ReLU, or iss /
tanh (to span the support) do the same? ;;"
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Experiment: [/ (0, 1)

Architecture KS Test AD Test
vanilla GAN X X
. WGAN X X
LSGAN X X

Table 1: Tests of Normality on gy-(u) at 5% level of significance.

[ Training instability or overfitting are not to blame either ]
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(a) Loss landscape and, (b) QQ plot corresponding to gy-(u) using Dropout in LSGAN.



Experiment: N (()7 1)

Similar trait follows for Gaussian translation and scaling.

N(0,1) & N(—200,1) |N(0,1) S N(~200,25)
Architecture Test of equality Tests of equality of mean
of mean and variance
vanilla GAN b4 X
WGAN X X
LSGAN X X

Fig 6: Tests of equality of parameters between generated and target distributions.
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Figure : QQ plots corresponding to generated distributions using (a) vanilla GAN, (b) WGAN, and
(c) LSGAN on input N(0,1) to achieve N(—200, 1); all deploying leaky-ReLU-activated 2-deep
generators with Dropout.



Experiment: N (()7 1)
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Figure 6: QQ plots corresponding to generated distributions using (a) vanilla GAN (b) WGAN,
and (c) LSGAN all deploying Tanh-activated dropped-out 2-deep generators; on input N (0, 1) to
achieve N (—200, 25).

e Significance is hardly achieved despite fine-tuning learning rates, discriminator’s
capacity, activations even in larger sample regimes.

[ Check out our poster and paper for details! ]
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