

Nonlinear Model Reduction for Operator Learning

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

The Twelfth International Conference on Learning Representations May 7-11 2024, Vienna, Austria

M *he76@tu-clausthal.de

Let us consider ${\mathcal U}$ and ${\mathcal V}$ as two separable Banach spaces and assume that

$\mathcal{G}:\mathcal{U}\longrightarrow\mathcal{V}$

is an arbitrary operator.

Let us consider ${\mathcal U}$ and ${\mathcal V}$ as two separable Banach spaces and assume that

 $\mathcal{G}: \mathcal{U} \longrightarrow \mathcal{V}$

is an arbitrary operator. We only have access to partially observed input and output data $\{u_i, v_i\}_{i=1}^N$ as N elements of $\mathcal{U} \times \mathcal{V}$ such that

$$\mathcal{G}(u_i) = v_i, \qquad i = 1, \cdots, N.$$

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

We consider ${\mathcal P}$ and ${\mathcal Q}$ as two linear and bounded evaluation operators

$$\mathcal{P}: u \mapsto (u(\boldsymbol{x}_1), u(\boldsymbol{x}_2), \cdots, u(\boldsymbol{x}_n))^T, \\ \mathcal{Q}: v \mapsto (v(\boldsymbol{y}_1), v(\boldsymbol{y}_2), \cdots, v(\boldsymbol{y}_m))^T.$$

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

We consider ${\mathcal P}$ and ${\mathcal Q}$ as two linear and bounded evaluation operators

$$\mathcal{P}: u \mapsto (u(\boldsymbol{x}_1), u(\boldsymbol{x}_2), \cdots, u(\boldsymbol{x}_n))^T, \\ \mathcal{Q}: v \mapsto (v(\boldsymbol{y}_1), v(\boldsymbol{y}_2), \cdots, v(\boldsymbol{y}_m))^T.$$

Considering $U_i = \mathcal{P}(u_i)$ and $V_i = \mathcal{Q}(v_i)$, our goal is to learn \mathcal{G} from dataset $\{U_i, V_i\}_{i=1}^N$.

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

Deep operator networks (DeepONets)

Deep operator networks (DeepONets)

Operator ${\mathcal G}$ can be approximated as

$$\mathcal{G}(u)(\boldsymbol{y}) \approx \sum_{k=1}^{p} b_k(U) t_k(\boldsymbol{y}) + b_0$$

Deep operator networks (DeepONets)

Operator \mathcal{G} can be approximated as

$$\mathcal{G}(u)(\boldsymbol{y}) \approx \sum_{k=1}^{p} \underbrace{b_{k}(U)t_{k}(\boldsymbol{y})}_{\text{linear reconstruction}} + b_{0}$$

$$\mathcal{P}(oldsymbol{u}) \in \mathbb{R}^n$$
 weightarrow Branch net $egin{array}{c} b_1 \ b_2 \ \cdots \ b_p \end{array}$
 $egin{array}{c} b_p \ \cdots \ b_p \end{array}$
 $egin{array}{c} \mathbf{y} \in \mathbb{R}^d weightarrow ext{Trunk net} \ \mathbf{y} \in \mathbb{R}^d$

Proper orthogonal decomposition (POD)-DeepONets

Institute for Software and Systems Engineering

Proper orthogonal decomposition (POD)-DeepONets

Trunk net is replaced by a set of POD basis functions

$$\mathcal{G}(u)(\boldsymbol{y}) \approx \sum_{k=1}^{p} b_k(U)\phi_k(\boldsymbol{y}) + \phi_0(\boldsymbol{y})$$

Institute for Software and Systems Engineering

Proper orthogonal decomposition (POD)-DeepONets

Trunk net is replaced by a set of POD basis functions

$$\mathcal{G}(u)(\boldsymbol{y}) \approx \sum_{k=1}^{p} \underbrace{b_k(U)\phi_k(\boldsymbol{y})}_{\text{linear reconstruction}} + \phi_0(\boldsymbol{y})$$

$$\mathcal{P}(\boldsymbol{u}) \in \mathbb{R}^n$$
 - Branch net b_1
 b_2
 \cdots
 b_p
 b_p
 $\phi_p(\boldsymbol{y})$
 $\phi_p(\boldsymbol{y})$
Precomputed POD modes

Kernel principal component analysis (KPCA)-DeepONets

Kernel principal component analysis (KPCA)-DeepONets

Operator \mathcal{G} can be approximated as

$$\mathcal{G}(u)(\boldsymbol{y}) \approx \sum_{i=1}^{N} \alpha_i(\boldsymbol{y}) k_z(\boldsymbol{b}(U), \boldsymbol{z}_i^t) + \phi_0(\boldsymbol{y}).$$

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

Numerical experiments

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE Nonlinear Model Reduction for Operator Learning

7

Numerical experiments

The ℓ_2 relative errors. Results for models marked with * are taken from Lu et al. (2022)¹.

Models	Cavity flow	Navier–Stokes
KPCA-DeepONet	$0.05 \pm 0.00\%$	$0.96 \pm 0.05\%$
POD-DeepONet*	$0.33\pm0.08\%$	$1.36\pm0.03\%$
$DeepONet^*$	$1.20\pm0.23\%$	$1.78\pm0.02\%$
FNO*	$0.63 \pm 0.04\%$	$1.81\pm0.02\%$

 $^{^1{\}rm Lu}$ Lu et al. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Comput. Methods Appl. Mech. Eng., 2022.

Summary and conclusions

- KPCA-DeepONet benefits from kernel methods and non-linear model reduction.
- KPCA-DeepONet provides a non-linear reconstruction.
- Our method results in less than 1% error for the Navier–Stokes test case.

Thank you! Any guestions?

Installation

pip install kpca-deeponet

GitHub

Paper

Numerical experiments

KPCA-DeepONet prediction against the reference data for one sample of the test dataset for the Navier–Stokes equation. $\tilde{\cdot}$ indicates the KPCA-DeepONet prediction.

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

Numerical experiments

KPCA-DeepONet prediction against the reference data for one sample of the test dataset for the cavity flow. $\tilde{\cdot}$ indicates the KPCA-DeepONet prediction.

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE

Computational cost

Comp. cost and GPU mem. usage for the proposed KPCA-DeepONet (orange, =) and POD-DeepONet (blue, •).

Hamidreza Eivazi*, Stefan Wittek & Andreas Rausch ISSE, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, DE