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Operator learning

Let us consider U and V as two separable Banach spaces and assume that

g: U

Y,

is an arbitrary operator.
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Operator learning

Let us consider U and V as two separable Banach spaces and assume that

g: U

Y,

is an arbitrary operator. We only have access to partially observed input and output data
{us, v;}¥.1 as N elements of U x V such that

g(ui):via 7':177N
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Operator learning
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Operator learning

U -V
P| lo
]Rn RTH

We consider P and Q as two linear and bounded evaluation operators

Pus (u(xr), u(za), -+, ulzn))?,

Q:v— (U(y1)7 U(yQ)’ ) v(ym))T'
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Operator learning

U Y
P| lo
]Rn Rm

We consider P and Q as two linear and bounded evaluation operators

Pus (u(xr), u(za), -+, ulzn))?,

Q g (U(yl), U(yQ)a T U(ym))T
Considering U; = P(u;) and V; = Q(v;), our goal is to learn G from dataset {U;, V;}I¥ ;.
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Deep operator networks (DeepONets)

by
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Deep operator networks (DeepONets)

Operator G can be approximated as by

P P(u) € R" [Eamrmak]
Z ) + bo \bp X}»

t1 /
/
y € R —[mm K]

G(u)(y) € R
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Deep operator networks (DeepONets)

Operator G can be approximated as by

P(u) € R" ~[Emamk
g

Glu)(y) =Y b(U)tly) +bo b,
k=1 linear reconstruction t /

y € Ri—[mmweK]

(u)(y) € R
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Proper orthogonal decomposition (POD)-DeepONets
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G(u)(y) €R

Precomputed POD modes
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Proper orthogonal decomposition (POD)-DeepONets

Trunk net is replaced by a set of POD by
basis functions
) .
+
§:j do(y) 1 ®G(u)(y) €R
y c Rd . #2(y)
p(y)

Precomputed POD modes
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Proper orthogonal decomposition (POD)-DeepONets

Trunk net is replaced by a set of POD
basis functions

Gu)(y) =Y (U)or(y) +ooly) — ®-G(u)(y) €R
k=1 v 1
linear reconstruction
y e R4 "
p(y)

Precomputed POD modes
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Kernel principal component analysis (KPCA)-DeepONets
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Kernel principal component analysis (KPCA)-DeepONets

b (KPCA)
Operator G can be approximated as
N
G(u)(y) = D ai(y) k= (b(U), 2{) + o(y).
=1
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Numerical experiments

Cavity flow Navier—Stokes
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Comparison of KPCA-DeepONet (orange, M) and POD-DeepONet (blue, @).
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Numerical experiments

The £5 relative errors. Results for models marked with * are taken from Lu et al. (2022).

Models Cavity flow Navier—Stokes

KPCA-DeepONet  0.05 &= 0.00% 0.96 & 0.05%
POD-DeepONet* 0.33 - 0.08% 1.36 +0.03%
DeepONet* 1.20 £ 0.23% 1.78 £ 0.02%
FNO* 0.63 +0.04% 1.81 +0.02%

1Lu Lu et al. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data.
Comput. Methods Appl. Mech. Eng., 2022.
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Summary and conclusions

= KPCA-DeepONet benefits from kernel methods and non-linear model reduction.
= KPCA-DeepONet provides a non-linear reconstruction.

= Qur method results in less than 1% error for the Navier—Stokes test case.
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GitHub Paper
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Numerical experiments

w
1.00 1.64 1.2e-02
= 0.50 0.00 5.9e-03
0.00 + —1.64F . 0.0e+00
0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00
z x x

KPCA-DeepONet prediction against the reference data for one sample of the test dataset for the Navier—Stokes equation. ~
indicates the KPCA-DeepONet prediction.
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Numerical experiments
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KPCA-DeepONet prediction against the reference data for one sample of the test dataset for the cavity flow. ~ indicates the
KPCA-DeepONet prediction.
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Computational cost
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Comp. cost and GPU mem. usage for the proposed KPCA-DeepONet (orange, M) and POD-DeepONet (blue, .).
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